Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV

Jun Sik Jeoung, Philip Anderson, Supapan Seraphin

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Thin separation by implanted oxygen substrates are attractive candidates for low-power, low-voltage electronic devices and can be obtained by low-dose, low-energy oxygen-ion implantation. We report in this study a variation of the process parameters that have never been investigated before, particularly for implantation with a high current density implanter. Characterization of the sample sets by transmission electron microscopy, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectrometry (RBS) shows an optimum dose of 3.0 to 3.5 × 1017 O+/cm2 at 100 keV for forming a continuous buried oxide (BOX) layer compared to 2.5 × 1017 O+/cm2 at 65 keV. At this optimum condition for 100 keV, the thickness of Si top layers and BOX layers is in the range of 175-185 nm and 70-80 nm, respectively. Analysis of the breakdown voltage of small area capacitors shows a breakdown field in the range of 6.0-7.0 MV/cm, which is adequate for low-power, low-voltage devices. SIMS analysis shows that the maximum oxygen concentration of as-implanted samples is located at depths of 160 and 240 nm for the implantation energy of 65 and 100 keV, respectively. A significant redistribution of oxygen occurs at temperatures above 1300°C during the ramping process. RBS analysis showed that a high-quality crystalline Si layer was produced after annealing at 1350°C for 4 h. The defect density determined by the chemical etching method was found to be very low (<300 defects per cm2) for all samples with a dose range of 3.0 × 1017 O+/cm2 to 6.0 × 1017 O+/cm2 implanted at 100 keV. However, a 65 keV sample with a dose of 4.5 × 1017 O+/cm2 contains about 109 defects per cm2. The larger defect density in the 65-keV sample may be due to the shift of oxygen depth distribution toward the surface, resulting in easier defect extension during the annealing process. The oxide precipitates in the Si overlayer play a key role in defect reduction by blocking the extension of dislocations to the surface.

Original languageEnglish (US)
Pages (from-to)2177-2187
Number of pages11
JournalJournal of Materials Research
Volume18
Issue number9
StatePublished - Sep 2003

Fingerprint

Microstructural evolution
Oxygen
dosage
Oxides
defects
oxygen
Defects
Defect density
Rutherford backscattering spectroscopy
Spectrometry
low voltage
oxides
Spectroscopy
Annealing
Ions
implantation
backscattering
mass spectroscopy
Electric potential
Electric breakdown

ASJC Scopus subject areas

  • Materials Science(all)

Cite this

Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV. / Jeoung, Jun Sik; Anderson, Philip; Seraphin, Supapan.

In: Journal of Materials Research, Vol. 18, No. 9, 09.2003, p. 2177-2187.

Research output: Contribution to journalArticle

@article{f11b129011c044f38c6434ac4854348b,
title = "Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV",
abstract = "Thin separation by implanted oxygen substrates are attractive candidates for low-power, low-voltage electronic devices and can be obtained by low-dose, low-energy oxygen-ion implantation. We report in this study a variation of the process parameters that have never been investigated before, particularly for implantation with a high current density implanter. Characterization of the sample sets by transmission electron microscopy, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectrometry (RBS) shows an optimum dose of 3.0 to 3.5 × 1017 O+/cm2 at 100 keV for forming a continuous buried oxide (BOX) layer compared to 2.5 × 1017 O+/cm2 at 65 keV. At this optimum condition for 100 keV, the thickness of Si top layers and BOX layers is in the range of 175-185 nm and 70-80 nm, respectively. Analysis of the breakdown voltage of small area capacitors shows a breakdown field in the range of 6.0-7.0 MV/cm, which is adequate for low-power, low-voltage devices. SIMS analysis shows that the maximum oxygen concentration of as-implanted samples is located at depths of 160 and 240 nm for the implantation energy of 65 and 100 keV, respectively. A significant redistribution of oxygen occurs at temperatures above 1300°C during the ramping process. RBS analysis showed that a high-quality crystalline Si layer was produced after annealing at 1350°C for 4 h. The defect density determined by the chemical etching method was found to be very low (<300 defects per cm2) for all samples with a dose range of 3.0 × 1017 O+/cm2 to 6.0 × 1017 O+/cm2 implanted at 100 keV. However, a 65 keV sample with a dose of 4.5 × 1017 O+/cm2 contains about 109 defects per cm2. The larger defect density in the 65-keV sample may be due to the shift of oxygen depth distribution toward the surface, resulting in easier defect extension during the annealing process. The oxide precipitates in the Si overlayer play a key role in defect reduction by blocking the extension of dislocations to the surface.",
author = "Jeoung, {Jun Sik} and Philip Anderson and Supapan Seraphin",
year = "2003",
month = "9",
language = "English (US)",
volume = "18",
pages = "2177--2187",
journal = "Journal of Materials Research",
issn = "0884-2914",
publisher = "Materials Research Society",
number = "9",

}

TY - JOUR

T1 - Microstructural evolution of low-dose separation by implanted oxygen materials implanted at 65 and 100 keV

AU - Jeoung, Jun Sik

AU - Anderson, Philip

AU - Seraphin, Supapan

PY - 2003/9

Y1 - 2003/9

N2 - Thin separation by implanted oxygen substrates are attractive candidates for low-power, low-voltage electronic devices and can be obtained by low-dose, low-energy oxygen-ion implantation. We report in this study a variation of the process parameters that have never been investigated before, particularly for implantation with a high current density implanter. Characterization of the sample sets by transmission electron microscopy, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectrometry (RBS) shows an optimum dose of 3.0 to 3.5 × 1017 O+/cm2 at 100 keV for forming a continuous buried oxide (BOX) layer compared to 2.5 × 1017 O+/cm2 at 65 keV. At this optimum condition for 100 keV, the thickness of Si top layers and BOX layers is in the range of 175-185 nm and 70-80 nm, respectively. Analysis of the breakdown voltage of small area capacitors shows a breakdown field in the range of 6.0-7.0 MV/cm, which is adequate for low-power, low-voltage devices. SIMS analysis shows that the maximum oxygen concentration of as-implanted samples is located at depths of 160 and 240 nm for the implantation energy of 65 and 100 keV, respectively. A significant redistribution of oxygen occurs at temperatures above 1300°C during the ramping process. RBS analysis showed that a high-quality crystalline Si layer was produced after annealing at 1350°C for 4 h. The defect density determined by the chemical etching method was found to be very low (<300 defects per cm2) for all samples with a dose range of 3.0 × 1017 O+/cm2 to 6.0 × 1017 O+/cm2 implanted at 100 keV. However, a 65 keV sample with a dose of 4.5 × 1017 O+/cm2 contains about 109 defects per cm2. The larger defect density in the 65-keV sample may be due to the shift of oxygen depth distribution toward the surface, resulting in easier defect extension during the annealing process. The oxide precipitates in the Si overlayer play a key role in defect reduction by blocking the extension of dislocations to the surface.

AB - Thin separation by implanted oxygen substrates are attractive candidates for low-power, low-voltage electronic devices and can be obtained by low-dose, low-energy oxygen-ion implantation. We report in this study a variation of the process parameters that have never been investigated before, particularly for implantation with a high current density implanter. Characterization of the sample sets by transmission electron microscopy, secondary ion mass spectroscopy (SIMS), and Rutherford backscattering spectrometry (RBS) shows an optimum dose of 3.0 to 3.5 × 1017 O+/cm2 at 100 keV for forming a continuous buried oxide (BOX) layer compared to 2.5 × 1017 O+/cm2 at 65 keV. At this optimum condition for 100 keV, the thickness of Si top layers and BOX layers is in the range of 175-185 nm and 70-80 nm, respectively. Analysis of the breakdown voltage of small area capacitors shows a breakdown field in the range of 6.0-7.0 MV/cm, which is adequate for low-power, low-voltage devices. SIMS analysis shows that the maximum oxygen concentration of as-implanted samples is located at depths of 160 and 240 nm for the implantation energy of 65 and 100 keV, respectively. A significant redistribution of oxygen occurs at temperatures above 1300°C during the ramping process. RBS analysis showed that a high-quality crystalline Si layer was produced after annealing at 1350°C for 4 h. The defect density determined by the chemical etching method was found to be very low (<300 defects per cm2) for all samples with a dose range of 3.0 × 1017 O+/cm2 to 6.0 × 1017 O+/cm2 implanted at 100 keV. However, a 65 keV sample with a dose of 4.5 × 1017 O+/cm2 contains about 109 defects per cm2. The larger defect density in the 65-keV sample may be due to the shift of oxygen depth distribution toward the surface, resulting in easier defect extension during the annealing process. The oxide precipitates in the Si overlayer play a key role in defect reduction by blocking the extension of dislocations to the surface.

UR - http://www.scopus.com/inward/record.url?scp=0141593379&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141593379&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0141593379

VL - 18

SP - 2177

EP - 2187

JO - Journal of Materials Research

JF - Journal of Materials Research

SN - 0884-2914

IS - 9

ER -