Microwave spectra and structures of the NNO-HCN, 15NNO-HCN, and NNO-DCN complexes

D. J. Pauley, Stephen G Kukolich

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

A total of 60 a- and b-dipole rotational transitions were measured in the 4-18 GHz range for the NNO-HCN, 15NNO-HCN, and NNO-DCN bimolecular complexes using a pulsed-beam, Fourier transform microwave spectrometer. Spectroscopic constants (A - DK), B, C, DJ, D JK, eQqaa (N of HCN), and eQqbb (N of HCN) were obtained by fitting the observed transition frequencies with a first-order quadrupole coupling interaction Hamiltonian. The structure of the complex appears to be planar with NNO and NCH nearly parallel. It can be described with the distance Rcm between the center-of-masses of the monomer subunits, the angle θ between HCN and Rcm, and the angle φ between N2O and Rcm. A least-squares fit to the nine rotational constants to obtain the structure parameters Rcm, θ, and φ, produced three local minimia for bent structures with standard deviations of < 25 MHz. A Kraitchman analysis was used to determine magnitudes of principal axes coordinates for the N of HCN, and the terminal N of NNO. The best nonlinear least-squares fit result (structure I, lowest standard deviation of the fit = 7.2 MHz) produced the best match to the coordinates from the Kraitchman analysis. The spectroscopic constants B, C, and eQqaa were used in a second structural analysis to determine values for R cm, θ, and φ. These results were compared with the above coordinates. The best least-squares fit structure parameters for the vibrationally averaged structure are Rcm = 3.253(4) Å, θ = 89.1 (5.4)°, and φ = 76.4(0.4)°. Comparisons are made with other similar weakly bound complexes.

Original languageEnglish (US)
Pages (from-to)3881-3886
Number of pages6
JournalThe Journal of Chemical Physics
Volume93
Issue number6
StatePublished - 1990

Fingerprint

Microwave spectrometers
Hamiltonians
microwave spectra
Structural analysis
Fourier transforms
Monomers
Microwaves
standard deviation
microwave spectrometers
structural analysis
center of mass
monomers
quadrupoles
dipoles
interactions

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Microwave spectra and structures of the NNO-HCN, 15NNO-HCN, and NNO-DCN complexes. / Pauley, D. J.; Kukolich, Stephen G.

In: The Journal of Chemical Physics, Vol. 93, No. 6, 1990, p. 3881-3886.

Research output: Contribution to journalArticle

@article{9d20acd1afa84a57a6997a6c7a6c2a73,
title = "Microwave spectra and structures of the NNO-HCN, 15NNO-HCN, and NNO-DCN complexes",
abstract = "A total of 60 a- and b-dipole rotational transitions were measured in the 4-18 GHz range for the NNO-HCN, 15NNO-HCN, and NNO-DCN bimolecular complexes using a pulsed-beam, Fourier transform microwave spectrometer. Spectroscopic constants (A - DK), B, C, DJ, D JK, eQqaa (N of HCN), and eQqbb (N of HCN) were obtained by fitting the observed transition frequencies with a first-order quadrupole coupling interaction Hamiltonian. The structure of the complex appears to be planar with NNO and NCH nearly parallel. It can be described with the distance Rcm between the center-of-masses of the monomer subunits, the angle θ between HCN and Rcm, and the angle φ between N2O and Rcm. A least-squares fit to the nine rotational constants to obtain the structure parameters Rcm, θ, and φ, produced three local minimia for bent structures with standard deviations of < 25 MHz. A Kraitchman analysis was used to determine magnitudes of principal axes coordinates for the N of HCN, and the terminal N of NNO. The best nonlinear least-squares fit result (structure I, lowest standard deviation of the fit = 7.2 MHz) produced the best match to the coordinates from the Kraitchman analysis. The spectroscopic constants B, C, and eQqaa were used in a second structural analysis to determine values for R cm, θ, and φ. These results were compared with the above coordinates. The best least-squares fit structure parameters for the vibrationally averaged structure are Rcm = 3.253(4) {\AA}, θ = 89.1 (5.4)°, and φ = 76.4(0.4)°. Comparisons are made with other similar weakly bound complexes.",
author = "Pauley, {D. J.} and Kukolich, {Stephen G}",
year = "1990",
language = "English (US)",
volume = "93",
pages = "3881--3886",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Microwave spectra and structures of the NNO-HCN, 15NNO-HCN, and NNO-DCN complexes

AU - Pauley, D. J.

AU - Kukolich, Stephen G

PY - 1990

Y1 - 1990

N2 - A total of 60 a- and b-dipole rotational transitions were measured in the 4-18 GHz range for the NNO-HCN, 15NNO-HCN, and NNO-DCN bimolecular complexes using a pulsed-beam, Fourier transform microwave spectrometer. Spectroscopic constants (A - DK), B, C, DJ, D JK, eQqaa (N of HCN), and eQqbb (N of HCN) were obtained by fitting the observed transition frequencies with a first-order quadrupole coupling interaction Hamiltonian. The structure of the complex appears to be planar with NNO and NCH nearly parallel. It can be described with the distance Rcm between the center-of-masses of the monomer subunits, the angle θ between HCN and Rcm, and the angle φ between N2O and Rcm. A least-squares fit to the nine rotational constants to obtain the structure parameters Rcm, θ, and φ, produced three local minimia for bent structures with standard deviations of < 25 MHz. A Kraitchman analysis was used to determine magnitudes of principal axes coordinates for the N of HCN, and the terminal N of NNO. The best nonlinear least-squares fit result (structure I, lowest standard deviation of the fit = 7.2 MHz) produced the best match to the coordinates from the Kraitchman analysis. The spectroscopic constants B, C, and eQqaa were used in a second structural analysis to determine values for R cm, θ, and φ. These results were compared with the above coordinates. The best least-squares fit structure parameters for the vibrationally averaged structure are Rcm = 3.253(4) Å, θ = 89.1 (5.4)°, and φ = 76.4(0.4)°. Comparisons are made with other similar weakly bound complexes.

AB - A total of 60 a- and b-dipole rotational transitions were measured in the 4-18 GHz range for the NNO-HCN, 15NNO-HCN, and NNO-DCN bimolecular complexes using a pulsed-beam, Fourier transform microwave spectrometer. Spectroscopic constants (A - DK), B, C, DJ, D JK, eQqaa (N of HCN), and eQqbb (N of HCN) were obtained by fitting the observed transition frequencies with a first-order quadrupole coupling interaction Hamiltonian. The structure of the complex appears to be planar with NNO and NCH nearly parallel. It can be described with the distance Rcm between the center-of-masses of the monomer subunits, the angle θ between HCN and Rcm, and the angle φ between N2O and Rcm. A least-squares fit to the nine rotational constants to obtain the structure parameters Rcm, θ, and φ, produced three local minimia for bent structures with standard deviations of < 25 MHz. A Kraitchman analysis was used to determine magnitudes of principal axes coordinates for the N of HCN, and the terminal N of NNO. The best nonlinear least-squares fit result (structure I, lowest standard deviation of the fit = 7.2 MHz) produced the best match to the coordinates from the Kraitchman analysis. The spectroscopic constants B, C, and eQqaa were used in a second structural analysis to determine values for R cm, θ, and φ. These results were compared with the above coordinates. The best least-squares fit structure parameters for the vibrationally averaged structure are Rcm = 3.253(4) Å, θ = 89.1 (5.4)°, and φ = 76.4(0.4)°. Comparisons are made with other similar weakly bound complexes.

UR - http://www.scopus.com/inward/record.url?scp=0040490939&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0040490939&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0040490939

VL - 93

SP - 3881

EP - 3886

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 6

ER -