Mineral assemblage and aggregates control carbon dynamics in a California conifer forest

Craig Rasmussen, Margaret S. Torn, Randal J. Southard

Research output: Contribution to journalArticle

115 Citations (Scopus)

Abstract

Uncertainty about the effects of climate change on terrestrial soil organic C stocks has generated interest in clarifying the processes that underlie soil C dynamics. We investigated the role of soil mineralogy and aggregate stability as key variables controlling soil C dynamics in a California conifer forest. We characterized soils derived from granite (GR) and mixed andesite-granite (AN) parent materials from similar forest conditions. Granite and AN soils contained similar clay mineral assemblages as determined by x-ray diffraction (XRD), dominated by vermiculite, hydroxy-interlayered vermiculite (HIV), kaolinite, and gibbsite. However, AN soils contained significantly more Al in Al-humus complexes (6.2 vs. 3.3 kg m-2) and more crystalline and short-range order (SRO) Fe oxyhydroxides (30.6 vs. 16.8 kg m-2) than GR soils. Andesite-granite pedons contained nearly 50% more C relative to GR soils (22.8 vs. 15.0 kg m-2). Distribution of C within density and aggregate fractions (free, occluded, and mineral associated C) varied significantly between AN and GR soils. In particular, AN soils had at least twice as much mineral associated C relative to GR soils in all horizons. Based on 14C measurements, occluded C mean residence time (MRT) > mineral C > free C in both soil types, suggesting a significant role for aggregate C protection in controlling soil C turnover. We found highly significant, positive correlations between Al-humus complexes, SRO Al minerals, and total C content. We suggest that a combination of aggregate protection and organo-mineral association with Al-humus complexes and SRO Al minerals control the variation in soil C dynamics in these systems.

Original languageEnglish (US)
Pages (from-to)1711-1721
Number of pages11
JournalSoil Science Society of America Journal
Volume69
Issue number6
DOIs
StatePublished - Nov 2005

Fingerprint

granite soils
coniferous forests
coniferous tree
granite
minerals
carbon
mineral
andesite
humus
soil
vermiculite
soil mineralogy
gibbsite
aggregate stability
kaolinite
clay minerals
soil aggregates
organic soils
soil types
X-radiation

ASJC Scopus subject areas

  • Soil Science
  • Earth-Surface Processes

Cite this

Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. / Rasmussen, Craig; Torn, Margaret S.; Southard, Randal J.

In: Soil Science Society of America Journal, Vol. 69, No. 6, 11.2005, p. 1711-1721.

Research output: Contribution to journalArticle

@article{f7f00d6f3b5b431aa3643dca9436479e,
title = "Mineral assemblage and aggregates control carbon dynamics in a California conifer forest",
abstract = "Uncertainty about the effects of climate change on terrestrial soil organic C stocks has generated interest in clarifying the processes that underlie soil C dynamics. We investigated the role of soil mineralogy and aggregate stability as key variables controlling soil C dynamics in a California conifer forest. We characterized soils derived from granite (GR) and mixed andesite-granite (AN) parent materials from similar forest conditions. Granite and AN soils contained similar clay mineral assemblages as determined by x-ray diffraction (XRD), dominated by vermiculite, hydroxy-interlayered vermiculite (HIV), kaolinite, and gibbsite. However, AN soils contained significantly more Al in Al-humus complexes (6.2 vs. 3.3 kg m-2) and more crystalline and short-range order (SRO) Fe oxyhydroxides (30.6 vs. 16.8 kg m-2) than GR soils. Andesite-granite pedons contained nearly 50{\%} more C relative to GR soils (22.8 vs. 15.0 kg m-2). Distribution of C within density and aggregate fractions (free, occluded, and mineral associated C) varied significantly between AN and GR soils. In particular, AN soils had at least twice as much mineral associated C relative to GR soils in all horizons. Based on 14C measurements, occluded C mean residence time (MRT) > mineral C > free C in both soil types, suggesting a significant role for aggregate C protection in controlling soil C turnover. We found highly significant, positive correlations between Al-humus complexes, SRO Al minerals, and total C content. We suggest that a combination of aggregate protection and organo-mineral association with Al-humus complexes and SRO Al minerals control the variation in soil C dynamics in these systems.",
author = "Craig Rasmussen and Torn, {Margaret S.} and Southard, {Randal J.}",
year = "2005",
month = "11",
doi = "10.2136/sssaj2005.0040",
language = "English (US)",
volume = "69",
pages = "1711--1721",
journal = "Soil Science Society of America Journal",
issn = "0361-5995",
publisher = "Soil Science Society of America",
number = "6",

}

TY - JOUR

T1 - Mineral assemblage and aggregates control carbon dynamics in a California conifer forest

AU - Rasmussen, Craig

AU - Torn, Margaret S.

AU - Southard, Randal J.

PY - 2005/11

Y1 - 2005/11

N2 - Uncertainty about the effects of climate change on terrestrial soil organic C stocks has generated interest in clarifying the processes that underlie soil C dynamics. We investigated the role of soil mineralogy and aggregate stability as key variables controlling soil C dynamics in a California conifer forest. We characterized soils derived from granite (GR) and mixed andesite-granite (AN) parent materials from similar forest conditions. Granite and AN soils contained similar clay mineral assemblages as determined by x-ray diffraction (XRD), dominated by vermiculite, hydroxy-interlayered vermiculite (HIV), kaolinite, and gibbsite. However, AN soils contained significantly more Al in Al-humus complexes (6.2 vs. 3.3 kg m-2) and more crystalline and short-range order (SRO) Fe oxyhydroxides (30.6 vs. 16.8 kg m-2) than GR soils. Andesite-granite pedons contained nearly 50% more C relative to GR soils (22.8 vs. 15.0 kg m-2). Distribution of C within density and aggregate fractions (free, occluded, and mineral associated C) varied significantly between AN and GR soils. In particular, AN soils had at least twice as much mineral associated C relative to GR soils in all horizons. Based on 14C measurements, occluded C mean residence time (MRT) > mineral C > free C in both soil types, suggesting a significant role for aggregate C protection in controlling soil C turnover. We found highly significant, positive correlations between Al-humus complexes, SRO Al minerals, and total C content. We suggest that a combination of aggregate protection and organo-mineral association with Al-humus complexes and SRO Al minerals control the variation in soil C dynamics in these systems.

AB - Uncertainty about the effects of climate change on terrestrial soil organic C stocks has generated interest in clarifying the processes that underlie soil C dynamics. We investigated the role of soil mineralogy and aggregate stability as key variables controlling soil C dynamics in a California conifer forest. We characterized soils derived from granite (GR) and mixed andesite-granite (AN) parent materials from similar forest conditions. Granite and AN soils contained similar clay mineral assemblages as determined by x-ray diffraction (XRD), dominated by vermiculite, hydroxy-interlayered vermiculite (HIV), kaolinite, and gibbsite. However, AN soils contained significantly more Al in Al-humus complexes (6.2 vs. 3.3 kg m-2) and more crystalline and short-range order (SRO) Fe oxyhydroxides (30.6 vs. 16.8 kg m-2) than GR soils. Andesite-granite pedons contained nearly 50% more C relative to GR soils (22.8 vs. 15.0 kg m-2). Distribution of C within density and aggregate fractions (free, occluded, and mineral associated C) varied significantly between AN and GR soils. In particular, AN soils had at least twice as much mineral associated C relative to GR soils in all horizons. Based on 14C measurements, occluded C mean residence time (MRT) > mineral C > free C in both soil types, suggesting a significant role for aggregate C protection in controlling soil C turnover. We found highly significant, positive correlations between Al-humus complexes, SRO Al minerals, and total C content. We suggest that a combination of aggregate protection and organo-mineral association with Al-humus complexes and SRO Al minerals control the variation in soil C dynamics in these systems.

UR - http://www.scopus.com/inward/record.url?scp=27644530573&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27644530573&partnerID=8YFLogxK

U2 - 10.2136/sssaj2005.0040

DO - 10.2136/sssaj2005.0040

M3 - Article

AN - SCOPUS:27644530573

VL - 69

SP - 1711

EP - 1721

JO - Soil Science Society of America Journal

JF - Soil Science Society of America Journal

SN - 0361-5995

IS - 6

ER -