Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells: Role in arsenic-induced carcinogenesis

Kylee E. Eblin, Tiffany Bredfeldt, Sarah Buffington, A Jay Gandolfi

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

Previous studies have shown that human bladder cells (UROtsa), a target of arsenic-induced cancer, can biotransform arsenite to monomethylarsonous acid (MMA(III)), which is more cytotoxic and capable of transforming the UROtsa cells following long-term, low-level exposure. Cyclooxygenase-2 (COX-2) causes hyperplasia in bladder cells and is considered a key biomarker in bladder cancer. To investigate the role of mitogenic pathway stimulation in MMA(III)-induced transformation, UROtsa cells were treated with 50nM MMA(III) for 12, 24, or 52 weeks and analyzed by Western blot for COX-2 expression. Elevations in COX-2 expression were noted following chronic MMA(III) exposure, and this induction increased with duration of exposure, suggesting that COX-2 or the signal transduction pathways responsible for COX-2 protein expression may play a role in MMA(III)-induced transformation. Acute exposure studies found MMA(III) treatment (10, 50, and 100nM, 4 h) induced COX-2 in UROtsa cells with the lowest doses (10 and 50nM) causing the strongest induction. Using pharmacological inhibitors of various pathways, it was shown that epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK-1/-2), phosphoinositide 3-kinase (PI3K), and src were important in the induction of COX-2 by MMA(III). ERK-2 phosphorylation was verified by Western blot analysis with a peak at 15 min, and c-jun was translocated to the nucleus following 50nM MMA(III) treatment. To determine MMA(III) targets, receptors of the erythroblastosis oncogene family (ErbB) family were further investigated. Chronic MMA(III) exposure led to upregulation of the EGFR or ErbB1. Short-term MMA(III) treatment caused the phosphorylation of ErbB2 in its autophosphorylation site. To verify the importance of these signaling pathways to the growth of the MMA(III)-transformed UROtsa cells in soft agar, various inhibitors were used to block pathways and monitor cells growth. Pathways of importance in anchorage-independent growth of UROtsa cells chronically exposed to MMA(III) are src, PI3K, and COX-1 and -2. As COX-2 is an important mediator that contributes to carcinogenesis via promotion of cell proliferation, inhibition of cell death, induction of angiogenesis, and facilitation of invasion, and it is highly upregulated both acutely and chronically in the MMA(III)-transformed cells, it is likely that activation of the mitogen-activated protein kinase pathway and increased COX-2 expression is a plausible mechanism for MMA(III) bladder carcinogenesis.

Original languageEnglish (US)
Pages (from-to)321-330
Number of pages10
JournalToxicological Sciences
Volume95
Issue number2
DOIs
StatePublished - Feb 2007

Fingerprint

Signal transduction
Arsenic
Signal Transduction
Carcinogenesis
Urinary Bladder
Cyclooxygenase 2
Phosphorylation
1-Phosphatidylinositol 4-Kinase
monomethylarsonous acid
Phosphatidylinositols
Epidermal Growth Factor Receptor
Growth
Western Blotting
Mitogen-Activated Protein Kinase 3
src-Family Kinases
Extracellular Signal-Regulated MAP Kinases
Cell proliferation
Cell growth
Biomarkers
Cell death

Keywords

  • COX-2
  • Monomethylarsonous acid
  • UROtsa

ASJC Scopus subject areas

  • Toxicology

Cite this

Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells : Role in arsenic-induced carcinogenesis. / Eblin, Kylee E.; Bredfeldt, Tiffany; Buffington, Sarah; Gandolfi, A Jay.

In: Toxicological Sciences, Vol. 95, No. 2, 02.2007, p. 321-330.

Research output: Contribution to journalArticle

@article{171f35a4c9c444b095cd580cda9256d8,
title = "Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells: Role in arsenic-induced carcinogenesis",
abstract = "Previous studies have shown that human bladder cells (UROtsa), a target of arsenic-induced cancer, can biotransform arsenite to monomethylarsonous acid (MMA(III)), which is more cytotoxic and capable of transforming the UROtsa cells following long-term, low-level exposure. Cyclooxygenase-2 (COX-2) causes hyperplasia in bladder cells and is considered a key biomarker in bladder cancer. To investigate the role of mitogenic pathway stimulation in MMA(III)-induced transformation, UROtsa cells were treated with 50nM MMA(III) for 12, 24, or 52 weeks and analyzed by Western blot for COX-2 expression. Elevations in COX-2 expression were noted following chronic MMA(III) exposure, and this induction increased with duration of exposure, suggesting that COX-2 or the signal transduction pathways responsible for COX-2 protein expression may play a role in MMA(III)-induced transformation. Acute exposure studies found MMA(III) treatment (10, 50, and 100nM, 4 h) induced COX-2 in UROtsa cells with the lowest doses (10 and 50nM) causing the strongest induction. Using pharmacological inhibitors of various pathways, it was shown that epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK-1/-2), phosphoinositide 3-kinase (PI3K), and src were important in the induction of COX-2 by MMA(III). ERK-2 phosphorylation was verified by Western blot analysis with a peak at 15 min, and c-jun was translocated to the nucleus following 50nM MMA(III) treatment. To determine MMA(III) targets, receptors of the erythroblastosis oncogene family (ErbB) family were further investigated. Chronic MMA(III) exposure led to upregulation of the EGFR or ErbB1. Short-term MMA(III) treatment caused the phosphorylation of ErbB2 in its autophosphorylation site. To verify the importance of these signaling pathways to the growth of the MMA(III)-transformed UROtsa cells in soft agar, various inhibitors were used to block pathways and monitor cells growth. Pathways of importance in anchorage-independent growth of UROtsa cells chronically exposed to MMA(III) are src, PI3K, and COX-1 and -2. As COX-2 is an important mediator that contributes to carcinogenesis via promotion of cell proliferation, inhibition of cell death, induction of angiogenesis, and facilitation of invasion, and it is highly upregulated both acutely and chronically in the MMA(III)-transformed cells, it is likely that activation of the mitogen-activated protein kinase pathway and increased COX-2 expression is a plausible mechanism for MMA(III) bladder carcinogenesis.",
keywords = "COX-2, Monomethylarsonous acid, UROtsa",
author = "Eblin, {Kylee E.} and Tiffany Bredfeldt and Sarah Buffington and Gandolfi, {A Jay}",
year = "2007",
month = "2",
doi = "10.1093/toxsci/kfl160",
language = "English (US)",
volume = "95",
pages = "321--330",
journal = "Toxicological Sciences",
issn = "1096-6080",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells

T2 - Role in arsenic-induced carcinogenesis

AU - Eblin, Kylee E.

AU - Bredfeldt, Tiffany

AU - Buffington, Sarah

AU - Gandolfi, A Jay

PY - 2007/2

Y1 - 2007/2

N2 - Previous studies have shown that human bladder cells (UROtsa), a target of arsenic-induced cancer, can biotransform arsenite to monomethylarsonous acid (MMA(III)), which is more cytotoxic and capable of transforming the UROtsa cells following long-term, low-level exposure. Cyclooxygenase-2 (COX-2) causes hyperplasia in bladder cells and is considered a key biomarker in bladder cancer. To investigate the role of mitogenic pathway stimulation in MMA(III)-induced transformation, UROtsa cells were treated with 50nM MMA(III) for 12, 24, or 52 weeks and analyzed by Western blot for COX-2 expression. Elevations in COX-2 expression were noted following chronic MMA(III) exposure, and this induction increased with duration of exposure, suggesting that COX-2 or the signal transduction pathways responsible for COX-2 protein expression may play a role in MMA(III)-induced transformation. Acute exposure studies found MMA(III) treatment (10, 50, and 100nM, 4 h) induced COX-2 in UROtsa cells with the lowest doses (10 and 50nM) causing the strongest induction. Using pharmacological inhibitors of various pathways, it was shown that epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK-1/-2), phosphoinositide 3-kinase (PI3K), and src were important in the induction of COX-2 by MMA(III). ERK-2 phosphorylation was verified by Western blot analysis with a peak at 15 min, and c-jun was translocated to the nucleus following 50nM MMA(III) treatment. To determine MMA(III) targets, receptors of the erythroblastosis oncogene family (ErbB) family were further investigated. Chronic MMA(III) exposure led to upregulation of the EGFR or ErbB1. Short-term MMA(III) treatment caused the phosphorylation of ErbB2 in its autophosphorylation site. To verify the importance of these signaling pathways to the growth of the MMA(III)-transformed UROtsa cells in soft agar, various inhibitors were used to block pathways and monitor cells growth. Pathways of importance in anchorage-independent growth of UROtsa cells chronically exposed to MMA(III) are src, PI3K, and COX-1 and -2. As COX-2 is an important mediator that contributes to carcinogenesis via promotion of cell proliferation, inhibition of cell death, induction of angiogenesis, and facilitation of invasion, and it is highly upregulated both acutely and chronically in the MMA(III)-transformed cells, it is likely that activation of the mitogen-activated protein kinase pathway and increased COX-2 expression is a plausible mechanism for MMA(III) bladder carcinogenesis.

AB - Previous studies have shown that human bladder cells (UROtsa), a target of arsenic-induced cancer, can biotransform arsenite to monomethylarsonous acid (MMA(III)), which is more cytotoxic and capable of transforming the UROtsa cells following long-term, low-level exposure. Cyclooxygenase-2 (COX-2) causes hyperplasia in bladder cells and is considered a key biomarker in bladder cancer. To investigate the role of mitogenic pathway stimulation in MMA(III)-induced transformation, UROtsa cells were treated with 50nM MMA(III) for 12, 24, or 52 weeks and analyzed by Western blot for COX-2 expression. Elevations in COX-2 expression were noted following chronic MMA(III) exposure, and this induction increased with duration of exposure, suggesting that COX-2 or the signal transduction pathways responsible for COX-2 protein expression may play a role in MMA(III)-induced transformation. Acute exposure studies found MMA(III) treatment (10, 50, and 100nM, 4 h) induced COX-2 in UROtsa cells with the lowest doses (10 and 50nM) causing the strongest induction. Using pharmacological inhibitors of various pathways, it was shown that epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK-1/-2), phosphoinositide 3-kinase (PI3K), and src were important in the induction of COX-2 by MMA(III). ERK-2 phosphorylation was verified by Western blot analysis with a peak at 15 min, and c-jun was translocated to the nucleus following 50nM MMA(III) treatment. To determine MMA(III) targets, receptors of the erythroblastosis oncogene family (ErbB) family were further investigated. Chronic MMA(III) exposure led to upregulation of the EGFR or ErbB1. Short-term MMA(III) treatment caused the phosphorylation of ErbB2 in its autophosphorylation site. To verify the importance of these signaling pathways to the growth of the MMA(III)-transformed UROtsa cells in soft agar, various inhibitors were used to block pathways and monitor cells growth. Pathways of importance in anchorage-independent growth of UROtsa cells chronically exposed to MMA(III) are src, PI3K, and COX-1 and -2. As COX-2 is an important mediator that contributes to carcinogenesis via promotion of cell proliferation, inhibition of cell death, induction of angiogenesis, and facilitation of invasion, and it is highly upregulated both acutely and chronically in the MMA(III)-transformed cells, it is likely that activation of the mitogen-activated protein kinase pathway and increased COX-2 expression is a plausible mechanism for MMA(III) bladder carcinogenesis.

KW - COX-2

KW - Monomethylarsonous acid

KW - UROtsa

UR - http://www.scopus.com/inward/record.url?scp=33846482728&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33846482728&partnerID=8YFLogxK

U2 - 10.1093/toxsci/kfl160

DO - 10.1093/toxsci/kfl160

M3 - Article

C2 - 17093206

AN - SCOPUS:33846482728

VL - 95

SP - 321

EP - 330

JO - Toxicological Sciences

JF - Toxicological Sciences

SN - 1096-6080

IS - 2

ER -