Modeling the transfer function for the dark energy survey

C. Chang, M. T. Busha, R. H. Wechsler, A. Refregier, A. Amara, E. Rykoff, M. R. Becker, C. Bruderer, L. Gamper, B. Leistedt, H. Peiris, T. Abbott, F. B. Abdalla, E. Balbinot, M. Banerji, R. A. Bernstein, E. Bertin, D. Brooks, A. Carnero, S. DesaiL. N. Da Costa, C. E. Cunha, T. Eifler, A. E. Evrard, A. Fausti Neto, D. Gerdes, D. Gruen, D. James, K. Kuehn, M. A.G. Maia, M. Makler, R. Ogando, A. Plazas, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Smith, M. Soares-Santos, E. Suchyta, M. E.C. Swanson, G. Tarle, J. Zuntz

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function - a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples - star-galaxy classification and proximity effects on object detection - are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.

Original languageEnglish (US)
Article number73
JournalAstrophysical Journal
Volume801
Issue number2
DOIs
StatePublished - Mar 10 2015

Keywords

  • methods: data analysis
  • methods: numerical
  • surveys
  • techniques: image processing

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Modeling the transfer function for the dark energy survey'. Together they form a unique fingerprint.

Cite this