Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method

David Gelman, Steven D Schwartz

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

Original languageEnglish (US)
Article number134110
JournalThe Journal of Chemical Physics
Volume130
Issue number13
DOIs
StatePublished - 2009
Externally publishedYes

Fingerprint

Hydrocarbons
hydrocarbons
baths
Baths
propagation
degrees of freedom
matrices
Linear Models
approximation
excitation
simulation

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry
  • Medicine(all)

Cite this

Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method. / Gelman, David; Schwartz, Steven D.

In: The Journal of Chemical Physics, Vol. 130, No. 13, 134110, 2009.

Research output: Contribution to journalArticle

@article{4001d6522c634ec38fc7de736189aaaf,
title = "Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method",
abstract = "The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.",
author = "David Gelman and Schwartz, {Steven D}",
year = "2009",
doi = "10.1063/1.3110063",
language = "English (US)",
volume = "130",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "13",

}

TY - JOUR

T1 - Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method

AU - Gelman, David

AU - Schwartz, Steven D

PY - 2009

Y1 - 2009

N2 - The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

AB - The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

UR - http://www.scopus.com/inward/record.url?scp=64549085362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=64549085362&partnerID=8YFLogxK

U2 - 10.1063/1.3110063

DO - 10.1063/1.3110063

M3 - Article

C2 - 19355720

AN - SCOPUS:64549085362

VL - 130

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 13

M1 - 134110

ER -