Monensin effects on digestibility, ruminal protein escape and microbial protein synthesis on high-fiber diets.

D. B. Faulkner, T. J. Klopfenstein, T. N. Trotter, R. A. Britton

Research output: Contribution to journalArticle

26 Scopus citations


The influence of monensin level (0, 6.1, 12.2, 18.3 and 36.6 ppm) on diet fiber digestibility, microbial protein synthesis and ruminal escape of dietary protein was evaluated in two steer metabolism trials. A growth trial was conducted to study possible interactions of forage quality and monensin level. In metabolism trial 1, four ruminal-cannulated steers were assigned to four monensin levels in a 4 X 4 Latin square design to measure fiber digestibility, rate of passage and protein metabolism. In metabolism trial 2, five duodenal-cannulated steers were assigned to five monensin levels in a 5 X 5 Latin square design to measure fiber digestibility, bacterial N flow and plant N flow. In the two metabolism trials, the level of monensin influenced organic matter (OM) digestibility, neutral detergent fiber (NDF) digestibility and ruminal NDF digestibility quadratically, with the intermediate levels of monensin being superior either to the high level of monensin or no monensin. A quadratic increase in particulate disappearance rate (P = .09) and no effect (P = .95) on liquid disappearance were also observed in trial 1. In trial 1, monensin level quadratically decreased (P = .10) the bacterial protein concentration and increased (P = .02) the ratio of total N:diaminopimilic acid in whole rumen contents. In trial 2, no overall difference in duodenal N flow (P = .64) or flow of individual amino acids (P = .46) was observed. In the growth trial, no interaction of cornstalk quality and monensin was observed (P less than .38).(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
Pages (from-to)654-660
Number of pages7
JournalJournal of animal science
Issue number3
StatePublished - Sep 1985


ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Cite this