Mountain-Block Recharge: A Review of Current Understanding

Katherine H. Markovich, Andrew H. Manning, Laura E. Condon, Jennifer C McIntosh

Research output: Contribution to journalReview article

1 Citation (Scopus)

Abstract

Mountain-block recharge (MBR) is the subsurface inflow of groundwater to lowland aquifers from adjacent mountains. MBR can be a major component of recharge but remains difficult to characterize and quantify due to limited hydrogeologic, climatic, and other data in the mountain block and at the mountain front. The number of MBR-related studies has increased dramatically in the 15 years since the last review of the topic was conducted by Wilson and Guan (2004), generating important advancements. We review this recent body of literature, summarize current understanding of factors controlling MBR, and provide recommendations for future research priorities. Prior to 2004, most MBR studies were performed in the southwestern United States. Since then, numerous studies have detected and quantified MBR in basins around the world, typically estimating MBR to be 5–50% of basin-fill aquifer recharge. Theoretical studies using generic numerical modeling domains have revealed fundamental hydrogeologic and topographic controls on the amount of MBR and where it originates within the mountain block. Several mountain-focused hydrogeologic studies have confirmed the widespread existence of mountain bedrock aquifers hosting considerable groundwater flow and, in some cases, identified the occurrence of interbasin flow leaving headwater catchments in the subsurface—both of which are required for MBR to occur. Future MBR research should focus on the collection of high-priority data (e.g., subsurface data near the mountain front and within the mountain block) and the development of sophisticated coupled models calibrated to multiple data types to best constrain MBR and predict how it may change in response to climate warming.

Original languageEnglish (US)
JournalWater Resources Research
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

recharge
mountain
aquifer
basin fill
theoretical study
headwater
groundwater flow
bedrock
inflow

ASJC Scopus subject areas

  • Water Science and Technology

Cite this

Mountain-Block Recharge : A Review of Current Understanding. / Markovich, Katherine H.; Manning, Andrew H.; Condon, Laura E.; McIntosh, Jennifer C.

In: Water Resources Research, 01.01.2019.

Research output: Contribution to journalReview article

Markovich, Katherine H. ; Manning, Andrew H. ; Condon, Laura E. ; McIntosh, Jennifer C. / Mountain-Block Recharge : A Review of Current Understanding. In: Water Resources Research. 2019.
@article{a3481f940f124a4b87df35559b99c7b4,
title = "Mountain-Block Recharge: A Review of Current Understanding",
abstract = "Mountain-block recharge (MBR) is the subsurface inflow of groundwater to lowland aquifers from adjacent mountains. MBR can be a major component of recharge but remains difficult to characterize and quantify due to limited hydrogeologic, climatic, and other data in the mountain block and at the mountain front. The number of MBR-related studies has increased dramatically in the 15 years since the last review of the topic was conducted by Wilson and Guan (2004), generating important advancements. We review this recent body of literature, summarize current understanding of factors controlling MBR, and provide recommendations for future research priorities. Prior to 2004, most MBR studies were performed in the southwestern United States. Since then, numerous studies have detected and quantified MBR in basins around the world, typically estimating MBR to be 5–50{\%} of basin-fill aquifer recharge. Theoretical studies using generic numerical modeling domains have revealed fundamental hydrogeologic and topographic controls on the amount of MBR and where it originates within the mountain block. Several mountain-focused hydrogeologic studies have confirmed the widespread existence of mountain bedrock aquifers hosting considerable groundwater flow and, in some cases, identified the occurrence of interbasin flow leaving headwater catchments in the subsurface—both of which are required for MBR to occur. Future MBR research should focus on the collection of high-priority data (e.g., subsurface data near the mountain front and within the mountain block) and the development of sophisticated coupled models calibrated to multiple data types to best constrain MBR and predict how it may change in response to climate warming.",
author = "Markovich, {Katherine H.} and Manning, {Andrew H.} and Condon, {Laura E.} and Jennifer C McIntosh",
year = "2019",
month = "1",
day = "1",
doi = "10.1029/2019WR025676",
language = "English (US)",
journal = "Water Resources Research",
issn = "0043-1397",
publisher = "American Geophysical Union",

}

TY - JOUR

T1 - Mountain-Block Recharge

T2 - A Review of Current Understanding

AU - Markovich, Katherine H.

AU - Manning, Andrew H.

AU - Condon, Laura E.

AU - McIntosh, Jennifer C

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Mountain-block recharge (MBR) is the subsurface inflow of groundwater to lowland aquifers from adjacent mountains. MBR can be a major component of recharge but remains difficult to characterize and quantify due to limited hydrogeologic, climatic, and other data in the mountain block and at the mountain front. The number of MBR-related studies has increased dramatically in the 15 years since the last review of the topic was conducted by Wilson and Guan (2004), generating important advancements. We review this recent body of literature, summarize current understanding of factors controlling MBR, and provide recommendations for future research priorities. Prior to 2004, most MBR studies were performed in the southwestern United States. Since then, numerous studies have detected and quantified MBR in basins around the world, typically estimating MBR to be 5–50% of basin-fill aquifer recharge. Theoretical studies using generic numerical modeling domains have revealed fundamental hydrogeologic and topographic controls on the amount of MBR and where it originates within the mountain block. Several mountain-focused hydrogeologic studies have confirmed the widespread existence of mountain bedrock aquifers hosting considerable groundwater flow and, in some cases, identified the occurrence of interbasin flow leaving headwater catchments in the subsurface—both of which are required for MBR to occur. Future MBR research should focus on the collection of high-priority data (e.g., subsurface data near the mountain front and within the mountain block) and the development of sophisticated coupled models calibrated to multiple data types to best constrain MBR and predict how it may change in response to climate warming.

AB - Mountain-block recharge (MBR) is the subsurface inflow of groundwater to lowland aquifers from adjacent mountains. MBR can be a major component of recharge but remains difficult to characterize and quantify due to limited hydrogeologic, climatic, and other data in the mountain block and at the mountain front. The number of MBR-related studies has increased dramatically in the 15 years since the last review of the topic was conducted by Wilson and Guan (2004), generating important advancements. We review this recent body of literature, summarize current understanding of factors controlling MBR, and provide recommendations for future research priorities. Prior to 2004, most MBR studies were performed in the southwestern United States. Since then, numerous studies have detected and quantified MBR in basins around the world, typically estimating MBR to be 5–50% of basin-fill aquifer recharge. Theoretical studies using generic numerical modeling domains have revealed fundamental hydrogeologic and topographic controls on the amount of MBR and where it originates within the mountain block. Several mountain-focused hydrogeologic studies have confirmed the widespread existence of mountain bedrock aquifers hosting considerable groundwater flow and, in some cases, identified the occurrence of interbasin flow leaving headwater catchments in the subsurface—both of which are required for MBR to occur. Future MBR research should focus on the collection of high-priority data (e.g., subsurface data near the mountain front and within the mountain block) and the development of sophisticated coupled models calibrated to multiple data types to best constrain MBR and predict how it may change in response to climate warming.

UR - http://www.scopus.com/inward/record.url?scp=85074980539&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85074980539&partnerID=8YFLogxK

U2 - 10.1029/2019WR025676

DO - 10.1029/2019WR025676

M3 - Review article

AN - SCOPUS:85074980539

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

ER -