Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

It is well understood that binary classifiers have two implicit objective functions (sensitivity and specificity) describing their performance. Traditional methods of classifier training attempt to combine these two objective functions (or two analogous class performance measures) into one so that conventional scalar optimization techniques can be utilized. This involves incorporating a priori information into the aggregation method so that the resulting performance of the classifier is satisfactory for the task at hand. We have investigated the use of a niched Pareto multiobjective genetic algorithm (GA) for classifier optimization. With niched Pareto GA's, an objective vector is optimized instead of a scalar function, eliminating the need to aggregate classification objective functions. The niched Pareto GA returns a set of optimal solutions that are equivalent in the absence of any information regarding the preferences of the objectives. The a priori knowledge that was used for aggregating the objective functions in conventional classifier training can instead be applied post-optimization to select from one of the series of solutions returned from the multiobjective genetic optimization. We have applied this technique to train a linear classifier and an artificial neural network (ANN), using simulated datasets. The performances of the solutions returned from the multiobjective genetic optimization represent a series of optimal (sensitivity, specificity) pairs, which can be thought of as operating points on a receiver operating characteristic (ROC) curve. All possible ROC curves for a given dataset and classifier are less than or equal to the ROC curve generated by the niched Pareto genetic optimization. Diagnostic classifiers, genetic algorithms, multiobjective optimization, ROC analysis.

Original languageEnglish (US)
Pages (from-to)675-685
Number of pages11
JournalIEEE Transactions on Medical Imaging
Volume18
Issue number8
DOIs
StatePublished - Jan 1 1999
Externally publishedYes

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves'. Together they form a unique fingerprint.

Cite this