Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni

Jan O. Washburn, Eric H. Lyons, Eric J. Haas-Stapleton, Loy E. Volkman

Research output: Contribution to journalArticle

50 Scopus citations

Abstract

Among the nucleopolyhedroviruses (Baculoviridae), the occlusion-derived virus (ODV), which initiates infection in host insects, may contain only a single nucleocapsid per virion (the SNPVs) or one to many nucleocapsids per virion (the MNPVs), but the significance of this difference is unclear. To gain insight into the biological relevance of these different packaging strategies, we compared pathogenesis induced by ODV fractions enriched for multiple nucleocapsids (ODV-M) or single nucleocapsids (ODV-S) of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) containing a β- galactosidase reporter gene. In time course experiments wherein newly molted fourth-instar Trichoplusia ni were challenged with doses of ODV-S or ODV-M that yielded the same final mortality (~70%), we characterized viral foci as either being restricted to the midgut or involving tracheal cells (the secondary target tissue, indicative of systemic infection). We found that while the timing of primary infection by ODV-S and ODV-M was similar, ODV-S established significantly more primary midgut cell loci than ODV-M, but ODV- M infected tracheal cells at twice the rate of ODV-S. The more efficient establishment of tracheal infections by ODV-M decreased the probability that infections were lost by midgut cell sloughing, explaining why higher numbers of primary infections established by ODV-S within larvae were needed to achieve the same final mortality. These results showed that the multiple nucleocapsid packaging strategy of AcMNPV accelerates the onset of irreversible systemic infections and may indicate why MNPVs have wider individual host ranges than SNPVs.

Original languageEnglish (US)
Pages (from-to)411-416
Number of pages6
JournalJournal of virology
Volume73
Issue number1
StatePublished - Jan 1 1999
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni'. Together they form a unique fingerprint.

  • Cite this