Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

William R. Dickinson, Mihai N Ducea, Lewis I. Rosenberg, H. Gary Greene, Stephan A. Graham, Joseph C. Clark, Gerald E. Weber, Steven Kidder, Earl E. Brabb, W. Gary Ernst

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio-Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system. San Gregorio-Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western flank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio-Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range. Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salin- ian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Cam- panian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Meso- zoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin. Slivering of the Salinian block by San Gregorio-Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio-Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio-Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio-Hosgri slip restored, there remains an unresolved proto-San Andreas mismatch of ~100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block. On the south, San Gregorio-Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio-Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

Original languageEnglish (US)
Pages (from-to)1-43
Number of pages43
JournalSpecial Paper of the Geological Society of America
Volume391
DOIs
StatePublished - 2005

Fingerprint

Neogene
fault zone
tectonics
San Andreas Fault
strike-slip fault
basin
transform
tectonic rotation
Cretaceous
crustal shortening
tectonic feature
coast
slip rate
fault slip
Campanian
basement rock
granodiorite
rock
Paleocene
Eocene

Keywords

  • California
  • Hosgri fault
  • Nacimiento fault
  • Salinian block
  • San Andreas fault
  • San Gregorio fault

ASJC Scopus subject areas

  • Geology

Cite this

Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California : Geologic evidence and tectonic implications. / Dickinson, William R.; Ducea, Mihai N; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Brabb, Earl E.; Ernst, W. Gary.

In: Special Paper of the Geological Society of America, Vol. 391, 2005, p. 1-43.

Research output: Contribution to journalArticle

Dickinson, William R. ; Ducea, Mihai N ; Rosenberg, Lewis I. ; Greene, H. Gary ; Graham, Stephan A. ; Clark, Joseph C. ; Weber, Gerald E. ; Kidder, Steven ; Brabb, Earl E. ; Ernst, W. Gary. / Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California : Geologic evidence and tectonic implications. In: Special Paper of the Geological Society of America. 2005 ; Vol. 391. pp. 1-43.
@article{f4cd6a3f6e914226acef09c5bed762d5,
title = "Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California: Geologic evidence and tectonic implications",
abstract = "Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio-Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system. San Gregorio-Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western flank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio-Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range. Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salin- ian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Cam- panian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Meso- zoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin. Slivering of the Salinian block by San Gregorio-Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio-Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio-Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio-Hosgri slip restored, there remains an unresolved proto-San Andreas mismatch of ~100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block. On the south, San Gregorio-Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio-Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.",
keywords = "California, Hosgri fault, Nacimiento fault, Salinian block, San Andreas fault, San Gregorio fault",
author = "Dickinson, {William R.} and Ducea, {Mihai N} and Rosenberg, {Lewis I.} and Greene, {H. Gary} and Graham, {Stephan A.} and Clark, {Joseph C.} and Weber, {Gerald E.} and Steven Kidder and Brabb, {Earl E.} and Ernst, {W. Gary}",
year = "2005",
doi = "10.1130/0-8137-2391-4.1",
language = "English (US)",
volume = "391",
pages = "1--43",
journal = "Special Paper of the Geological Society of America",
issn = "0072-1077",
publisher = "Geological Society of America",

}

TY - JOUR

T1 - Net dextral slip, Neogene San Gregorio-Hosgri fault zone, coastal California

T2 - Geologic evidence and tectonic implications

AU - Dickinson, William R.

AU - Ducea, Mihai N

AU - Rosenberg, Lewis I.

AU - Greene, H. Gary

AU - Graham, Stephan A.

AU - Clark, Joseph C.

AU - Weber, Gerald E.

AU - Kidder, Steven

AU - Brabb, Earl E.

AU - Ernst, W. Gary

PY - 2005

Y1 - 2005

N2 - Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio-Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system. San Gregorio-Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western flank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio-Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range. Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salin- ian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Cam- panian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Meso- zoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin. Slivering of the Salinian block by San Gregorio-Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio-Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio-Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio-Hosgri slip restored, there remains an unresolved proto-San Andreas mismatch of ~100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block. On the south, San Gregorio-Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio-Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

AB - Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio-Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system. San Gregorio-Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western flank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio-Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range. Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salin- ian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Cam- panian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Meso- zoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin. Slivering of the Salinian block by San Gregorio-Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio-Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio-Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio-Hosgri slip restored, there remains an unresolved proto-San Andreas mismatch of ~100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block. On the south, San Gregorio-Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio-Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

KW - California

KW - Hosgri fault

KW - Nacimiento fault

KW - Salinian block

KW - San Andreas fault

KW - San Gregorio fault

UR - http://www.scopus.com/inward/record.url?scp=73949156893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=73949156893&partnerID=8YFLogxK

U2 - 10.1130/0-8137-2391-4.1

DO - 10.1130/0-8137-2391-4.1

M3 - Article

AN - SCOPUS:73949156893

VL - 391

SP - 1

EP - 43

JO - Special Paper of the Geological Society of America

JF - Special Paper of the Geological Society of America

SN - 0072-1077

ER -