Neuronal basis for parallel visual processing in the fly.

Research output: Contribution to journalArticle

119 Citations (Scopus)

Abstract

Behavioral and electrophysiological studies of insects demonstrate both spectrally independent and chromatically dependent behaviors and interneurons. This account describes the neuroanatomical identification of two parallel retinotropic subsystems, one supplying descending channels to spectrally independent neck and flight motor circuits, the other supplying polychromatic channels to neuropils associated with leg motor circuits in the thoracic ganglia. In the compound eye, two classes of photoreceptors contribute to each of several thousand sampling units. High-sensitivity, chromatically uniform short-axon photoreceptors (R1-R6) supply the lamina's external plexiform layer and are presynaptic to L1, L2 efferents. These project in parallel with a second system of trichromatic long-axon receptors and the L3 efferent. Both pathways supply columns of the medulla, equal in number to ommatidia. Golgi and cobalt-silver impregnation demonstrates that neurons from the medulla diverge to two deeper regions, the lobula plate and lobula, the former a thin tectum of neuropil dorsal to the more substantial lobula. Layer relationships between medulla neurons and their afferent supply suggest that the lobula plate and lobula are each supplied by one or the other, but not both, of the two parallel subsystems. Independence of the two parallel pathways is suggested by ablation of the photoreceptor layer leading to selective degeneration of the motion-sensitive lobula plate neuropil. In addition, octets of small-field neurons associated with the R1-R6/L1, L2 pathway give rise to synaptic complexes with motion-sensitive neurons of the lobula plate. A variety of behavioral and electrophysiological studies provide supporting evidence that certain insects possess parallel visual pathways comparable to the magnocellular and parvocellular subsystems of primates.

Original languageEnglish (US)
Pages (from-to)13-33
Number of pages21
JournalVisual Neuroscience
Volume7
Issue number1-2
StatePublished - Jul 1991

Fingerprint

Neuropil
Diptera
Neurons
Axons
Insects
Afferent Neurons
Visual Pathways
Interneurons
Cobalt
Silver
Ganglia
Primates
Leg
Neck
Thorax

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Neuronal basis for parallel visual processing in the fly. / Strausfeld, Nicholas J; Lee, J. K.

In: Visual Neuroscience, Vol. 7, No. 1-2, 07.1991, p. 13-33.

Research output: Contribution to journalArticle

@article{5886c82422614dbbab8bd46caa9196c9,
title = "Neuronal basis for parallel visual processing in the fly.",
abstract = "Behavioral and electrophysiological studies of insects demonstrate both spectrally independent and chromatically dependent behaviors and interneurons. This account describes the neuroanatomical identification of two parallel retinotropic subsystems, one supplying descending channels to spectrally independent neck and flight motor circuits, the other supplying polychromatic channels to neuropils associated with leg motor circuits in the thoracic ganglia. In the compound eye, two classes of photoreceptors contribute to each of several thousand sampling units. High-sensitivity, chromatically uniform short-axon photoreceptors (R1-R6) supply the lamina's external plexiform layer and are presynaptic to L1, L2 efferents. These project in parallel with a second system of trichromatic long-axon receptors and the L3 efferent. Both pathways supply columns of the medulla, equal in number to ommatidia. Golgi and cobalt-silver impregnation demonstrates that neurons from the medulla diverge to two deeper regions, the lobula plate and lobula, the former a thin tectum of neuropil dorsal to the more substantial lobula. Layer relationships between medulla neurons and their afferent supply suggest that the lobula plate and lobula are each supplied by one or the other, but not both, of the two parallel subsystems. Independence of the two parallel pathways is suggested by ablation of the photoreceptor layer leading to selective degeneration of the motion-sensitive lobula plate neuropil. In addition, octets of small-field neurons associated with the R1-R6/L1, L2 pathway give rise to synaptic complexes with motion-sensitive neurons of the lobula plate. A variety of behavioral and electrophysiological studies provide supporting evidence that certain insects possess parallel visual pathways comparable to the magnocellular and parvocellular subsystems of primates.",
author = "Strausfeld, {Nicholas J} and Lee, {J. K.}",
year = "1991",
month = "7",
language = "English (US)",
volume = "7",
pages = "13--33",
journal = "Visual Neuroscience",
issn = "0952-5238",
publisher = "Cambridge University Press",
number = "1-2",

}

TY - JOUR

T1 - Neuronal basis for parallel visual processing in the fly.

AU - Strausfeld, Nicholas J

AU - Lee, J. K.

PY - 1991/7

Y1 - 1991/7

N2 - Behavioral and electrophysiological studies of insects demonstrate both spectrally independent and chromatically dependent behaviors and interneurons. This account describes the neuroanatomical identification of two parallel retinotropic subsystems, one supplying descending channels to spectrally independent neck and flight motor circuits, the other supplying polychromatic channels to neuropils associated with leg motor circuits in the thoracic ganglia. In the compound eye, two classes of photoreceptors contribute to each of several thousand sampling units. High-sensitivity, chromatically uniform short-axon photoreceptors (R1-R6) supply the lamina's external plexiform layer and are presynaptic to L1, L2 efferents. These project in parallel with a second system of trichromatic long-axon receptors and the L3 efferent. Both pathways supply columns of the medulla, equal in number to ommatidia. Golgi and cobalt-silver impregnation demonstrates that neurons from the medulla diverge to two deeper regions, the lobula plate and lobula, the former a thin tectum of neuropil dorsal to the more substantial lobula. Layer relationships between medulla neurons and their afferent supply suggest that the lobula plate and lobula are each supplied by one or the other, but not both, of the two parallel subsystems. Independence of the two parallel pathways is suggested by ablation of the photoreceptor layer leading to selective degeneration of the motion-sensitive lobula plate neuropil. In addition, octets of small-field neurons associated with the R1-R6/L1, L2 pathway give rise to synaptic complexes with motion-sensitive neurons of the lobula plate. A variety of behavioral and electrophysiological studies provide supporting evidence that certain insects possess parallel visual pathways comparable to the magnocellular and parvocellular subsystems of primates.

AB - Behavioral and electrophysiological studies of insects demonstrate both spectrally independent and chromatically dependent behaviors and interneurons. This account describes the neuroanatomical identification of two parallel retinotropic subsystems, one supplying descending channels to spectrally independent neck and flight motor circuits, the other supplying polychromatic channels to neuropils associated with leg motor circuits in the thoracic ganglia. In the compound eye, two classes of photoreceptors contribute to each of several thousand sampling units. High-sensitivity, chromatically uniform short-axon photoreceptors (R1-R6) supply the lamina's external plexiform layer and are presynaptic to L1, L2 efferents. These project in parallel with a second system of trichromatic long-axon receptors and the L3 efferent. Both pathways supply columns of the medulla, equal in number to ommatidia. Golgi and cobalt-silver impregnation demonstrates that neurons from the medulla diverge to two deeper regions, the lobula plate and lobula, the former a thin tectum of neuropil dorsal to the more substantial lobula. Layer relationships between medulla neurons and their afferent supply suggest that the lobula plate and lobula are each supplied by one or the other, but not both, of the two parallel subsystems. Independence of the two parallel pathways is suggested by ablation of the photoreceptor layer leading to selective degeneration of the motion-sensitive lobula plate neuropil. In addition, octets of small-field neurons associated with the R1-R6/L1, L2 pathway give rise to synaptic complexes with motion-sensitive neurons of the lobula plate. A variety of behavioral and electrophysiological studies provide supporting evidence that certain insects possess parallel visual pathways comparable to the magnocellular and parvocellular subsystems of primates.

UR - http://www.scopus.com/inward/record.url?scp=0026199584&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026199584&partnerID=8YFLogxK

M3 - Article

C2 - 1931797

AN - SCOPUS:0026199584

VL - 7

SP - 13

EP - 33

JO - Visual Neuroscience

JF - Visual Neuroscience

SN - 0952-5238

IS - 1-2

ER -