New seismic stratigraphy and Late Tertiary history of the North Tanganyika Basin, East African Rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence

K. E. Lezzar, J. J. Tiercelin, M. De Batist, A. S. Cohen, T. Bandora, P. Van Rensbergen, C. Le Turdu, W. Mifundu, J. Klerkx

Research output: Contribution to journalArticle

78 Scopus citations

Abstract

We present here the initial results of a high-resolution (sparker) reflection seismic survey in Northern Lake Tanganyika, East African Rift system. We have combined these results with data from earlier multichannel reflection seismic and 5-kHz echosounding surveys. The combination of the three complementary seismic investigation methods has allowed us to propose a new scenario for the late Miocene to Recent sedimentary evolution of the North Tanganyika Basin. Seismic sequences and regional tectonic information permit us to deduce the palaeotopography at the end of each stratigraphic sequence. The basin history comprises six phases interpreted to be responses to variations in regional tectonism and/or climate. Using the reflection seismic-radiocarbon method (RSRM), the minimum ages for the start of each phase (above each sequence boundary) are estimated to be: ∼7.4 Ma, ∼1.1 Ma, ∼393-363 ka, ∼295-262 ka, ∼193-169 ka, ∼40-35 ka. Corresponding lowstand lake elevations below present lake level for the last five phases are estimated to have been: ∼650-700 m, ∼350 m, ∼350 m, ∼250 m and ∼160 m, respectively. The latest phase from ∼40-35 ka until the present can be subdivided into three subphases separated by two lowstand periods, dated at ∼23 ka and ∼18 ka. From the late Miocene until the mid Pleistocene, large-scale patterns of sedimentation within the basin were primarily controlled by tectonism. In contrast, from the mid Pleistocene to the present, sedimentation in Lake Tanganyika seems to have responded dramatically to climatic changes as suggested by repeated patterns of lake level fluctuations. During this period, the basin infill history is characterized by the recurrent association of three types of deposits: 'basin fill' accumulations; lens-shaped 'deep lacustrine fans'; and 'sheet drape' deposits. The successive low-lake-level fluctuations decreased in intensity with time as a consequence of rapid sedimentary filling under conditions of declining tectonic subsidence. The climate signal has thus been more pronounced in recent sedimentary phases as tectonic effects have waned.

Original languageEnglish (US)
Pages (from-to)1-28
Number of pages28
JournalBasin Research
Volume8
Issue number1
DOIs
StatePublished - Mar 1 1996

ASJC Scopus subject areas

  • Geology

Fingerprint Dive into the research topics of 'New seismic stratigraphy and Late Tertiary history of the North Tanganyika Basin, East African Rift system, deduced from multichannel and high-resolution reflection seismic data and piston core evidence'. Together they form a unique fingerprint.

  • Cite this