New techniques for high-contrast imaging with ADI

The ACORNS-ADI seeds data reduction pipeline

Timothy D. Brandt, Michael W. McElwain, Edwin L. Turner, L. Abe, W. Brandner, J. Carson, S. Egner, M. Feldt, T. Golota, M. Goto, C. A. Grady, Olivier Guyon, J. Hashimoto, Y. Hayano, M. Hayashi, S. Hayashi, T. Henning, K. W. Hodapp, M. Ishii, M. Iye & 27 others M. Janson, R. Kandori, G. R. Knapp, T. Kudo, N. Kusakabe, M. Kuzuhara, J. Kwon, T. Matsuo, S. Miyama, J. I. Morino, A. Moro-Martín, T. Nishimura, T. S. Pyo, E. Serabyn, H. Suto, R. Suzuki, M. Takami, N. Takato, H. Terada, C. Thalmann, D. Tomono, M. Watanabe, J. P. Wisniewski, T. Yamada, H. Takami, T. Usuda, M. Tamura

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ∼20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.

Original languageEnglish (US)
Article number183
JournalAstrophysical Journal
Volume764
Issue number2
DOIs
StatePublished - Feb 20 2013
Externally publishedYes

Fingerprint

data reduction
seeds
calibration
seed
stars
computer programs
software
registers
field of view
image processing
artifact
artifacts
registration
sensitivity
detectors
electronics
method

Keywords

  • methods: data analysis
  • planetary systems
  • techniques: high angular resolution
  • techniques: image processing

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

Brandt, T. D., McElwain, M. W., Turner, E. L., Abe, L., Brandner, W., Carson, J., ... Tamura, M. (2013). New techniques for high-contrast imaging with ADI: The ACORNS-ADI seeds data reduction pipeline. Astrophysical Journal, 764(2), [183]. https://doi.org/10.1088/0004-637X/764/2/183

New techniques for high-contrast imaging with ADI : The ACORNS-ADI seeds data reduction pipeline. / Brandt, Timothy D.; McElwain, Michael W.; Turner, Edwin L.; Abe, L.; Brandner, W.; Carson, J.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Grady, C. A.; Guyon, Olivier; Hashimoto, J.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K. W.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J. I.; Moro-Martín, A.; Nishimura, T.; Pyo, T. S.; Serabyn, E.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Watanabe, M.; Wisniewski, J. P.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

In: Astrophysical Journal, Vol. 764, No. 2, 183, 20.02.2013.

Research output: Contribution to journalArticle

Brandt, TD, McElwain, MW, Turner, EL, Abe, L, Brandner, W, Carson, J, Egner, S, Feldt, M, Golota, T, Goto, M, Grady, CA, Guyon, O, Hashimoto, J, Hayano, Y, Hayashi, M, Hayashi, S, Henning, T, Hodapp, KW, Ishii, M, Iye, M, Janson, M, Kandori, R, Knapp, GR, Kudo, T, Kusakabe, N, Kuzuhara, M, Kwon, J, Matsuo, T, Miyama, S, Morino, JI, Moro-Martín, A, Nishimura, T, Pyo, TS, Serabyn, E, Suto, H, Suzuki, R, Takami, M, Takato, N, Terada, H, Thalmann, C, Tomono, D, Watanabe, M, Wisniewski, JP, Yamada, T, Takami, H, Usuda, T & Tamura, M 2013, 'New techniques for high-contrast imaging with ADI: The ACORNS-ADI seeds data reduction pipeline', Astrophysical Journal, vol. 764, no. 2, 183. https://doi.org/10.1088/0004-637X/764/2/183
Brandt, Timothy D. ; McElwain, Michael W. ; Turner, Edwin L. ; Abe, L. ; Brandner, W. ; Carson, J. ; Egner, S. ; Feldt, M. ; Golota, T. ; Goto, M. ; Grady, C. A. ; Guyon, Olivier ; Hashimoto, J. ; Hayano, Y. ; Hayashi, M. ; Hayashi, S. ; Henning, T. ; Hodapp, K. W. ; Ishii, M. ; Iye, M. ; Janson, M. ; Kandori, R. ; Knapp, G. R. ; Kudo, T. ; Kusakabe, N. ; Kuzuhara, M. ; Kwon, J. ; Matsuo, T. ; Miyama, S. ; Morino, J. I. ; Moro-Martín, A. ; Nishimura, T. ; Pyo, T. S. ; Serabyn, E. ; Suto, H. ; Suzuki, R. ; Takami, M. ; Takato, N. ; Terada, H. ; Thalmann, C. ; Tomono, D. ; Watanabe, M. ; Wisniewski, J. P. ; Yamada, T. ; Takami, H. ; Usuda, T. ; Tamura, M. / New techniques for high-contrast imaging with ADI : The ACORNS-ADI seeds data reduction pipeline. In: Astrophysical Journal. 2013 ; Vol. 764, No. 2.
@article{0eec31e9e4014d2b9c61c0e45458c800,
title = "New techniques for high-contrast imaging with ADI: The ACORNS-ADI seeds data reduction pipeline",
abstract = "We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ∼20{\%}, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.",
keywords = "methods: data analysis, planetary systems, techniques: high angular resolution, techniques: image processing",
author = "Brandt, {Timothy D.} and McElwain, {Michael W.} and Turner, {Edwin L.} and L. Abe and W. Brandner and J. Carson and S. Egner and M. Feldt and T. Golota and M. Goto and Grady, {C. A.} and Olivier Guyon and J. Hashimoto and Y. Hayano and M. Hayashi and S. Hayashi and T. Henning and Hodapp, {K. W.} and M. Ishii and M. Iye and M. Janson and R. Kandori and Knapp, {G. R.} and T. Kudo and N. Kusakabe and M. Kuzuhara and J. Kwon and T. Matsuo and S. Miyama and Morino, {J. I.} and A. Moro-Mart{\'i}n and T. Nishimura and Pyo, {T. S.} and E. Serabyn and H. Suto and R. Suzuki and M. Takami and N. Takato and H. Terada and C. Thalmann and D. Tomono and M. Watanabe and Wisniewski, {J. P.} and T. Yamada and H. Takami and T. Usuda and M. Tamura",
year = "2013",
month = "2",
day = "20",
doi = "10.1088/0004-637X/764/2/183",
language = "English (US)",
volume = "764",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "2",

}

TY - JOUR

T1 - New techniques for high-contrast imaging with ADI

T2 - The ACORNS-ADI seeds data reduction pipeline

AU - Brandt, Timothy D.

AU - McElwain, Michael W.

AU - Turner, Edwin L.

AU - Abe, L.

AU - Brandner, W.

AU - Carson, J.

AU - Egner, S.

AU - Feldt, M.

AU - Golota, T.

AU - Goto, M.

AU - Grady, C. A.

AU - Guyon, Olivier

AU - Hashimoto, J.

AU - Hayano, Y.

AU - Hayashi, M.

AU - Hayashi, S.

AU - Henning, T.

AU - Hodapp, K. W.

AU - Ishii, M.

AU - Iye, M.

AU - Janson, M.

AU - Kandori, R.

AU - Knapp, G. R.

AU - Kudo, T.

AU - Kusakabe, N.

AU - Kuzuhara, M.

AU - Kwon, J.

AU - Matsuo, T.

AU - Miyama, S.

AU - Morino, J. I.

AU - Moro-Martín, A.

AU - Nishimura, T.

AU - Pyo, T. S.

AU - Serabyn, E.

AU - Suto, H.

AU - Suzuki, R.

AU - Takami, M.

AU - Takato, N.

AU - Terada, H.

AU - Thalmann, C.

AU - Tomono, D.

AU - Watanabe, M.

AU - Wisniewski, J. P.

AU - Yamada, T.

AU - Takami, H.

AU - Usuda, T.

AU - Tamura, M.

PY - 2013/2/20

Y1 - 2013/2/20

N2 - We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ∼20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.

AB - We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ∼20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.

KW - methods: data analysis

KW - planetary systems

KW - techniques: high angular resolution

KW - techniques: image processing

UR - http://www.scopus.com/inward/record.url?scp=84874096456&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874096456&partnerID=8YFLogxK

U2 - 10.1088/0004-637X/764/2/183

DO - 10.1088/0004-637X/764/2/183

M3 - Article

VL - 764

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 183

ER -