Noise, error and bandwidth in polarimeters

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Modulated polarimeters reconstruct polarization information by altering the intensity, recording several measurements, then inverting the instrument's characteristic response. These devices might modulate with time-varying optics, by the introduction of spatial polarization-dependent fringes, through the use of optically thick retarders, or other methods. Recent years have seen many studies concerning the optimal performance of such instruments. In this paper, an attempt is made to present a unifying viewpoing of modulated polarimeters as devices that divide sensor bandwidth in a controlled fashion to reconstruct multiplexed polarization data.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSPIE
Volume9186
ISBN (Print)9781628412130
DOIs
StatePublished - 2014
Event50 Years of Optical Sciences at the University of Arizona - San Diego, United States
Duration: Aug 19 2014Aug 20 2014

Other

Other50 Years of Optical Sciences at the University of Arizona
CountryUnited States
CitySan Diego
Period8/19/148/20/14

Keywords

  • Polarimetry
  • Polarization

ASJC Scopus subject areas

  • Applied Mathematics
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Noise, error and bandwidth in polarimeters'. Together they form a unique fingerprint.

  • Cite this

    Tyo, J. S. (2014). Noise, error and bandwidth in polarimeters. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 9186). [91860N] SPIE. https://doi.org/10.1117/12.2064855