Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism

Henry D. Adams, Matthew J. Germino, David D. Breshears, Greg A. Barron-Gafford, Maite Guardiola-Claramonte, Chris B. Zou, Travis E. Huxman

Research output: Contribution to journalArticle

137 Scopus citations

Abstract

Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species.

Original languageEnglish (US)
Pages (from-to)1142-1151
Number of pages10
JournalNew Phytologist
Volume197
Issue number4
DOIs
StatePublished - Mar 1 2013

Keywords

  • Biosphere-atmosphere feedbacks
  • Carbon starvation
  • Drought impacts
  • Global change
  • Hydraulic failure
  • Mortality mechanism
  • Nonstructural carbohydrates (NSCs)
  • Tree mortality

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint Dive into the research topics of 'Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism'. Together they form a unique fingerprint.

  • Cite this