Novel gas distributors and optimization for high power density in fuel cells

P. W. Li, S. P. Chen, M. K. Chyu

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

A novel gas distributor for fuel cells is proposed. It has three-dimensional current-collecting elements distributed in gas-delivery fields for effective current collection and heat/mass transfer enhancement. An analysis model has been developed in order to understand the performance of the output power density when the dimensions and distributive arrangement of the current collectors are different. Optimization analysis for a planar-type SOFC was conducted in order to outline the approach in optimizing a gas-delivery field when adopting three-dimensional current-collecting elements in a fuel cell. Experimental test of a proton exchange membrane (PEM) fuel cell adopting the novel gas distributor was conducted for verification of the new approach. Significant improvement of power output was obtained for the proposed new PEM fuel cells compared to the conventional ones under the same conditions except for the different gas distributors. Both the experimental results and modeling analysis are of great significance to the design of fuel cells of high power density.

Original languageEnglish (US)
Pages (from-to)311-318
Number of pages8
JournalJournal of Power Sources
Volume140
Issue number2
DOIs
StatePublished - Feb 2 2005
Externally publishedYes

Keywords

  • Fuel cells
  • High power density
  • Novel gas distributors
  • Optimization

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Novel gas distributors and optimization for high power density in fuel cells'. Together they form a unique fingerprint.

Cite this