TY - GEN
T1 - Numerical investigation of flows with three-dimensional separation
AU - Gross, A.
AU - Fasel, H. F.
PY - 2013/8/19
Y1 - 2013/8/19
N2 - When low aspect ratio geometries such as submarines, torpedoes, or missiles are operated at large angles of attack three-dimensional separation will occur on the leeward side. Separation increases losses and can result in undesirable unsteady forces. An improved understanding of three-dimensional separation is desirable as it may open the door to new methods for the control or prevention of separation. Numerical simulations of three-dimensional separation can provide detailed insight into instability mechanisms and the resultant flow structures. For most technical applications the Reynolds numbers are too high for direct numerical simulations and lower-fidelity approaches such as hybrid turbulence models become attractive. In this paper a new hybrid turbulence model blending strategy is proposed that adjusts the model contribution according to the local grid resolution. The strategy is validated for two-dimensional plane channel flow at Reτ= 395 and for the Stanford asymmetric diffuser which features a turbulent three-dimensional separation. The model is then employed for simulations of a hemisphere-cylinder geometry at 10 and 30 degrees angle of attack. The simulations demonstrate satisfactory model performance over a wide range of Reynolds numbers (5×103< ReD< 5×106). A nose separation bubble is captured for the lower Reynolds numbers and leeward vortices are observed for 30deg angle of attack regardless of Reynolds number. Different from, e.g., hemisphere-cylinder geometries asymmetric separation and roll-instability were reported for non-body-of-revolution geometries. The paper concludes with a brief discussion of simulations that were carried out for the Virginia Tech ellipsoid model at ReL= 20, 000.
AB - When low aspect ratio geometries such as submarines, torpedoes, or missiles are operated at large angles of attack three-dimensional separation will occur on the leeward side. Separation increases losses and can result in undesirable unsteady forces. An improved understanding of three-dimensional separation is desirable as it may open the door to new methods for the control or prevention of separation. Numerical simulations of three-dimensional separation can provide detailed insight into instability mechanisms and the resultant flow structures. For most technical applications the Reynolds numbers are too high for direct numerical simulations and lower-fidelity approaches such as hybrid turbulence models become attractive. In this paper a new hybrid turbulence model blending strategy is proposed that adjusts the model contribution according to the local grid resolution. The strategy is validated for two-dimensional plane channel flow at Reτ= 395 and for the Stanford asymmetric diffuser which features a turbulent three-dimensional separation. The model is then employed for simulations of a hemisphere-cylinder geometry at 10 and 30 degrees angle of attack. The simulations demonstrate satisfactory model performance over a wide range of Reynolds numbers (5×103< ReD< 5×106). A nose separation bubble is captured for the lower Reynolds numbers and leeward vortices are observed for 30deg angle of attack regardless of Reynolds number. Different from, e.g., hemisphere-cylinder geometries asymmetric separation and roll-instability were reported for non-body-of-revolution geometries. The paper concludes with a brief discussion of simulations that were carried out for the Virginia Tech ellipsoid model at ReL= 20, 000.
UR - http://www.scopus.com/inward/record.url?scp=84881440025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881440025&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781624101816
T3 - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
BT - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
T2 - 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
Y2 - 7 January 2013 through 10 January 2013
ER -