Observations of Titan's Northern lakes at 5μm

Implications for the organic cycle and geology

C. Sotin, K. J. Lawrence, B. Reinhardt, J. W. Barnes, Robert H. Brown, A. G. Hayes, S. Le Mouélic, S. Rodriguez, J. M. Soderblom, L. A. Soderblom, K. H. Baines, B. J. Buratti, R. N. Clark, R. Jaumann, P. D. Nicholson, K. Stephan

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Since Titan entered Northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the Northern Pole area with a pixel size from 3 to 7km. Since, as we demonstrate, little of the solar flux at 5μm is scattered by the atmosphere, these observations were obtained at relatively large incidence angles and allowed us to build a mosaic covering an area of more than 500,000km 2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-μm dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest that the 125,000-km 2 surface area of Ligeia Mare measured by RADAR in 2007 has not significantly changed. The VIMS observations complement the radar observations to the west of Ligeia Mare and suggest that Ligeia Mare is connected to Kraken Mare by either a diffuse network similar to a swamp area, or by well-defined, sub-pixel rivers. Considering the results of recent evaporation models of methane, our preferred interpretation of the relative constancy in surface area of Ligeia is that it is principally composed of ethane although we cannot rule out the possibility that methane evaporation is balanced with replenishment by either precipitation or underground seepage. There is also strong correlation between the location of the small radar lakes and the small VIMS 5-μm dark patches. The geographic location of the small lakes are within a VIMS pixel of the SAR location, suggesting that the non-synchronous component of Titan's spin rate, if it exists, was less than 2.3×10 -4deg/day between 2007 and 2010 in agreement with the recent T64 radar observations. These observations question the existence of non-synchronous rotation. Two radar-bright features appear dark at 5-μm. The simplest interpretation is that these are very shallow lakes, less than one meter deep. Three new small lakes, named Freeman, Cardiel, and Towada by the IAU, are found outside of the area mapped with the SAR. A single-scattering model describing reflection of sunlight at 5-μm suggests that the lake surface is mirror-like and that the albedo of the solid surfaces surrounding the lakes is about 8%. These observations together with information of the haze aerosols allow us to show that Titan's lakes, atmospheric ethane and aerosol haze are smaller carbon reservoirs than Titan's sand dunes and atmospheric methane. A simple model involving an outburst of methane a few hundreds of Myr ago followed by the dissociation of methane in the atmosphere leading to the formation of the haze particles that constitute the dune fields would be consistent with both the present observations and recent measurements of isotopic ratios in atmospheric methane (Mandt, K.E. et al. [2012]. Astrophys. J. 749(160), 14).

Original languageEnglish (US)
Pages (from-to)768-786
Number of pages19
JournalIcarus
Volume221
Issue number2
DOIs
StatePublished - Nov 2012

Fingerprint

Titan
geology
lakes
spectrometer
methane
radar
cycles
lake
spectrometers
haze
synthetic aperture radar
pixel
dunes
ethane
radar tracking
pixels
complement
surface area
evaporation
aerosols

Keywords

  • Exobiology
  • Organic chemistry
  • Titan
  • Titan atmosphere
  • Titan hydrology

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

Sotin, C., Lawrence, K. J., Reinhardt, B., Barnes, J. W., Brown, R. H., Hayes, A. G., ... Stephan, K. (2012). Observations of Titan's Northern lakes at 5μm: Implications for the organic cycle and geology. Icarus, 221(2), 768-786. https://doi.org/10.1016/j.icarus.2012.08.017

Observations of Titan's Northern lakes at 5μm : Implications for the organic cycle and geology. / Sotin, C.; Lawrence, K. J.; Reinhardt, B.; Barnes, J. W.; Brown, Robert H.; Hayes, A. G.; Le Mouélic, S.; Rodriguez, S.; Soderblom, J. M.; Soderblom, L. A.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; Nicholson, P. D.; Stephan, K.

In: Icarus, Vol. 221, No. 2, 11.2012, p. 768-786.

Research output: Contribution to journalArticle

Sotin, C, Lawrence, KJ, Reinhardt, B, Barnes, JW, Brown, RH, Hayes, AG, Le Mouélic, S, Rodriguez, S, Soderblom, JM, Soderblom, LA, Baines, KH, Buratti, BJ, Clark, RN, Jaumann, R, Nicholson, PD & Stephan, K 2012, 'Observations of Titan's Northern lakes at 5μm: Implications for the organic cycle and geology', Icarus, vol. 221, no. 2, pp. 768-786. https://doi.org/10.1016/j.icarus.2012.08.017
Sotin, C. ; Lawrence, K. J. ; Reinhardt, B. ; Barnes, J. W. ; Brown, Robert H. ; Hayes, A. G. ; Le Mouélic, S. ; Rodriguez, S. ; Soderblom, J. M. ; Soderblom, L. A. ; Baines, K. H. ; Buratti, B. J. ; Clark, R. N. ; Jaumann, R. ; Nicholson, P. D. ; Stephan, K. / Observations of Titan's Northern lakes at 5μm : Implications for the organic cycle and geology. In: Icarus. 2012 ; Vol. 221, No. 2. pp. 768-786.
@article{6cd56f219d1f4c2180bf27d8186bc097,
title = "Observations of Titan's Northern lakes at 5μm: Implications for the organic cycle and geology",
abstract = "Since Titan entered Northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the Northern Pole area with a pixel size from 3 to 7km. Since, as we demonstrate, little of the solar flux at 5μm is scattered by the atmosphere, these observations were obtained at relatively large incidence angles and allowed us to build a mosaic covering an area of more than 500,000km 2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-μm dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest that the 125,000-km 2 surface area of Ligeia Mare measured by RADAR in 2007 has not significantly changed. The VIMS observations complement the radar observations to the west of Ligeia Mare and suggest that Ligeia Mare is connected to Kraken Mare by either a diffuse network similar to a swamp area, or by well-defined, sub-pixel rivers. Considering the results of recent evaporation models of methane, our preferred interpretation of the relative constancy in surface area of Ligeia is that it is principally composed of ethane although we cannot rule out the possibility that methane evaporation is balanced with replenishment by either precipitation or underground seepage. There is also strong correlation between the location of the small radar lakes and the small VIMS 5-μm dark patches. The geographic location of the small lakes are within a VIMS pixel of the SAR location, suggesting that the non-synchronous component of Titan's spin rate, if it exists, was less than 2.3×10 -4deg/day between 2007 and 2010 in agreement with the recent T64 radar observations. These observations question the existence of non-synchronous rotation. Two radar-bright features appear dark at 5-μm. The simplest interpretation is that these are very shallow lakes, less than one meter deep. Three new small lakes, named Freeman, Cardiel, and Towada by the IAU, are found outside of the area mapped with the SAR. A single-scattering model describing reflection of sunlight at 5-μm suggests that the lake surface is mirror-like and that the albedo of the solid surfaces surrounding the lakes is about 8{\%}. These observations together with information of the haze aerosols allow us to show that Titan's lakes, atmospheric ethane and aerosol haze are smaller carbon reservoirs than Titan's sand dunes and atmospheric methane. A simple model involving an outburst of methane a few hundreds of Myr ago followed by the dissociation of methane in the atmosphere leading to the formation of the haze particles that constitute the dune fields would be consistent with both the present observations and recent measurements of isotopic ratios in atmospheric methane (Mandt, K.E. et al. [2012]. Astrophys. J. 749(160), 14).",
keywords = "Exobiology, Organic chemistry, Titan, Titan atmosphere, Titan hydrology",
author = "C. Sotin and Lawrence, {K. J.} and B. Reinhardt and Barnes, {J. W.} and Brown, {Robert H.} and Hayes, {A. G.} and {Le Mou{\'e}lic}, S. and S. Rodriguez and Soderblom, {J. M.} and Soderblom, {L. A.} and Baines, {K. H.} and Buratti, {B. J.} and Clark, {R. N.} and R. Jaumann and Nicholson, {P. D.} and K. Stephan",
year = "2012",
month = "11",
doi = "10.1016/j.icarus.2012.08.017",
language = "English (US)",
volume = "221",
pages = "768--786",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Observations of Titan's Northern lakes at 5μm

T2 - Implications for the organic cycle and geology

AU - Sotin, C.

AU - Lawrence, K. J.

AU - Reinhardt, B.

AU - Barnes, J. W.

AU - Brown, Robert H.

AU - Hayes, A. G.

AU - Le Mouélic, S.

AU - Rodriguez, S.

AU - Soderblom, J. M.

AU - Soderblom, L. A.

AU - Baines, K. H.

AU - Buratti, B. J.

AU - Clark, R. N.

AU - Jaumann, R.

AU - Nicholson, P. D.

AU - Stephan, K.

PY - 2012/11

Y1 - 2012/11

N2 - Since Titan entered Northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the Northern Pole area with a pixel size from 3 to 7km. Since, as we demonstrate, little of the solar flux at 5μm is scattered by the atmosphere, these observations were obtained at relatively large incidence angles and allowed us to build a mosaic covering an area of more than 500,000km 2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-μm dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest that the 125,000-km 2 surface area of Ligeia Mare measured by RADAR in 2007 has not significantly changed. The VIMS observations complement the radar observations to the west of Ligeia Mare and suggest that Ligeia Mare is connected to Kraken Mare by either a diffuse network similar to a swamp area, or by well-defined, sub-pixel rivers. Considering the results of recent evaporation models of methane, our preferred interpretation of the relative constancy in surface area of Ligeia is that it is principally composed of ethane although we cannot rule out the possibility that methane evaporation is balanced with replenishment by either precipitation or underground seepage. There is also strong correlation between the location of the small radar lakes and the small VIMS 5-μm dark patches. The geographic location of the small lakes are within a VIMS pixel of the SAR location, suggesting that the non-synchronous component of Titan's spin rate, if it exists, was less than 2.3×10 -4deg/day between 2007 and 2010 in agreement with the recent T64 radar observations. These observations question the existence of non-synchronous rotation. Two radar-bright features appear dark at 5-μm. The simplest interpretation is that these are very shallow lakes, less than one meter deep. Three new small lakes, named Freeman, Cardiel, and Towada by the IAU, are found outside of the area mapped with the SAR. A single-scattering model describing reflection of sunlight at 5-μm suggests that the lake surface is mirror-like and that the albedo of the solid surfaces surrounding the lakes is about 8%. These observations together with information of the haze aerosols allow us to show that Titan's lakes, atmospheric ethane and aerosol haze are smaller carbon reservoirs than Titan's sand dunes and atmospheric methane. A simple model involving an outburst of methane a few hundreds of Myr ago followed by the dissociation of methane in the atmosphere leading to the formation of the haze particles that constitute the dune fields would be consistent with both the present observations and recent measurements of isotopic ratios in atmospheric methane (Mandt, K.E. et al. [2012]. Astrophys. J. 749(160), 14).

AB - Since Titan entered Northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the Northern Pole area with a pixel size from 3 to 7km. Since, as we demonstrate, little of the solar flux at 5μm is scattered by the atmosphere, these observations were obtained at relatively large incidence angles and allowed us to build a mosaic covering an area of more than 500,000km 2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-μm dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest that the 125,000-km 2 surface area of Ligeia Mare measured by RADAR in 2007 has not significantly changed. The VIMS observations complement the radar observations to the west of Ligeia Mare and suggest that Ligeia Mare is connected to Kraken Mare by either a diffuse network similar to a swamp area, or by well-defined, sub-pixel rivers. Considering the results of recent evaporation models of methane, our preferred interpretation of the relative constancy in surface area of Ligeia is that it is principally composed of ethane although we cannot rule out the possibility that methane evaporation is balanced with replenishment by either precipitation or underground seepage. There is also strong correlation between the location of the small radar lakes and the small VIMS 5-μm dark patches. The geographic location of the small lakes are within a VIMS pixel of the SAR location, suggesting that the non-synchronous component of Titan's spin rate, if it exists, was less than 2.3×10 -4deg/day between 2007 and 2010 in agreement with the recent T64 radar observations. These observations question the existence of non-synchronous rotation. Two radar-bright features appear dark at 5-μm. The simplest interpretation is that these are very shallow lakes, less than one meter deep. Three new small lakes, named Freeman, Cardiel, and Towada by the IAU, are found outside of the area mapped with the SAR. A single-scattering model describing reflection of sunlight at 5-μm suggests that the lake surface is mirror-like and that the albedo of the solid surfaces surrounding the lakes is about 8%. These observations together with information of the haze aerosols allow us to show that Titan's lakes, atmospheric ethane and aerosol haze are smaller carbon reservoirs than Titan's sand dunes and atmospheric methane. A simple model involving an outburst of methane a few hundreds of Myr ago followed by the dissociation of methane in the atmosphere leading to the formation of the haze particles that constitute the dune fields would be consistent with both the present observations and recent measurements of isotopic ratios in atmospheric methane (Mandt, K.E. et al. [2012]. Astrophys. J. 749(160), 14).

KW - Exobiology

KW - Organic chemistry

KW - Titan

KW - Titan atmosphere

KW - Titan hydrology

UR - http://www.scopus.com/inward/record.url?scp=84867234744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867234744&partnerID=8YFLogxK

U2 - 10.1016/j.icarus.2012.08.017

DO - 10.1016/j.icarus.2012.08.017

M3 - Article

VL - 221

SP - 768

EP - 786

JO - Icarus

JF - Icarus

SN - 0019-1035

IS - 2

ER -