Observer-based body-frame hovering control over a tumbling asteroid

Morad Nazari, Robert Wauson, Thomas Critz, Eric A. Butcher, Daniel J. Scheeres

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Observer-based hovering control over a tumbling asteroid in the body-fixed frame is studied. An extended Kalman filter (EKF) is used to process range measurements from a small collection of ground stations, yielding estimates of the spacecraft state vector and the gravitational parameters of the asteroid assuming a second degree and order gravity field model. The estimated states are used in the optimal feedback control algorithm which consists of two alternatives: time-varying LQR or the Lyapunov-Floquet transformation (LFT) and time-invariant LQR. The closed-loop response of the system and the control effort required are investigated and compared for both control strategies.

Original languageEnglish (US)
Title of host publicationAstrodynamics 2013 - Advances in the Astronautical Sciences
Subtitle of host publicationProceedings of the AAS/AIAA Astrodynamics Specialist Conference
PublisherUnivelt Inc.
Pages1737-1755
Number of pages19
ISBN (Print)9780877036050
StatePublished - 2014
Event2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013 - Hilton Head Island, SC, United States
Duration: Aug 11 2013Aug 15 2013

Publication series

NameAdvances in the Astronautical Sciences
Volume150
ISSN (Print)0065-3438

Other

Other2013 AAS/AIAA Astrodynamics Specialist Conference, Astrodynamics 2013
CountryUnited States
CityHilton Head Island, SC
Period8/11/138/15/13

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Observer-based body-frame hovering control over a tumbling asteroid'. Together they form a unique fingerprint.

Cite this