On the Navarro-Willems conjecture for blocks of finite groups

C. Bessenrodt, G. Navarro, J. B. Olsson, Pham Huu Tiep

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We prove that a set of characters of a finite group can only be the set of characters for principal blocks of the group at two different primes when the primes do not divide the group order. This confirms a conjecture of Navarro and Willems in the case of principal blocks.

Original languageEnglish (US)
Pages (from-to)481-484
Number of pages4
JournalJournal of Pure and Applied Algebra
Volume208
Issue number2
DOIs
StatePublished - Feb 2007
Externally publishedYes

Fingerprint

Finite Group
Divides
Character

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

On the Navarro-Willems conjecture for blocks of finite groups. / Bessenrodt, C.; Navarro, G.; Olsson, J. B.; Tiep, Pham Huu.

In: Journal of Pure and Applied Algebra, Vol. 208, No. 2, 02.2007, p. 481-484.

Research output: Contribution to journalArticle

Bessenrodt, C. ; Navarro, G. ; Olsson, J. B. ; Tiep, Pham Huu. / On the Navarro-Willems conjecture for blocks of finite groups. In: Journal of Pure and Applied Algebra. 2007 ; Vol. 208, No. 2. pp. 481-484.
@article{968e7476f052420ba66787ab85c226eb,
title = "On the Navarro-Willems conjecture for blocks of finite groups",
abstract = "We prove that a set of characters of a finite group can only be the set of characters for principal blocks of the group at two different primes when the primes do not divide the group order. This confirms a conjecture of Navarro and Willems in the case of principal blocks.",
author = "C. Bessenrodt and G. Navarro and Olsson, {J. B.} and Tiep, {Pham Huu}",
year = "2007",
month = "2",
doi = "10.1016/j.jpaa.2006.01.013",
language = "English (US)",
volume = "208",
pages = "481--484",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - On the Navarro-Willems conjecture for blocks of finite groups

AU - Bessenrodt, C.

AU - Navarro, G.

AU - Olsson, J. B.

AU - Tiep, Pham Huu

PY - 2007/2

Y1 - 2007/2

N2 - We prove that a set of characters of a finite group can only be the set of characters for principal blocks of the group at two different primes when the primes do not divide the group order. This confirms a conjecture of Navarro and Willems in the case of principal blocks.

AB - We prove that a set of characters of a finite group can only be the set of characters for principal blocks of the group at two different primes when the primes do not divide the group order. This confirms a conjecture of Navarro and Willems in the case of principal blocks.

UR - http://www.scopus.com/inward/record.url?scp=33750832326&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750832326&partnerID=8YFLogxK

U2 - 10.1016/j.jpaa.2006.01.013

DO - 10.1016/j.jpaa.2006.01.013

M3 - Article

VL - 208

SP - 481

EP - 484

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 2

ER -