On the non-uniform distribution of the angular elements of near-Earth objects

Youngmin JeongAhn, Renu Malhotra

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω[U+203E]=111°; approximately 53 % of NEOs have Ω values within ±90° of Ω[U+203E]. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ψ, and longitudes of perihelion π{variant}. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ψ due to secular dynamics associated with inclination-eccentricity-ψ coupling, and the Amors' π{variant} distribution is peaked towards the secularly forced eccentricity vector. The Apollos' ψ distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55 % of the Apollos' ψ values. The Amors' π{variant} distribution peaks near π{variant}[U+203E]=4°; 61% of Amors have π{variant} within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter's. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

Original languageEnglish (US)
Pages (from-to)236-246
Number of pages11
JournalIcarus
Volume229
DOIs
StatePublished - Feb 2014

Fingerprint

near Earth objects
Jupiter (planet)
eccentricity
Apollo asteroids
angular distribution
Jupiter
deviation
distribution
quadrants
longitude
subgroups
asteroids
statistical distributions
nonuniformity
inclination
periodic variations
asteroid
periodicity
perturbation
causes

Keywords

  • Asteroids, dynamics
  • Near-Earth objects

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

On the non-uniform distribution of the angular elements of near-Earth objects. / JeongAhn, Youngmin; Malhotra, Renu.

In: Icarus, Vol. 229, 02.2014, p. 236-246.

Research output: Contribution to journalArticle

@article{361ce457180e4760b9f8869cdcb010b1,
title = "On the non-uniform distribution of the angular elements of near-Earth objects",
abstract = "We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω[U+203E]=111°; approximately 53 {\%} of NEOs have Ω values within ±90° of Ω[U+203E]. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ψ, and longitudes of perihelion π{variant}. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ψ due to secular dynamics associated with inclination-eccentricity-ψ coupling, and the Amors' π{variant} distribution is peaked towards the secularly forced eccentricity vector. The Apollos' ψ distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55 {\%} of the Apollos' ψ values. The Amors' π{variant} distribution peaks near π{variant}[U+203E]=4°; 61{\%} of Amors have π{variant} within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter's. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.",
keywords = "Asteroids, dynamics, Near-Earth objects",
author = "Youngmin JeongAhn and Renu Malhotra",
year = "2014",
month = "2",
doi = "10.1016/j.icarus.2013.10.030",
language = "English (US)",
volume = "229",
pages = "236--246",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - On the non-uniform distribution of the angular elements of near-Earth objects

AU - JeongAhn, Youngmin

AU - Malhotra, Renu

PY - 2014/2

Y1 - 2014/2

N2 - We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω[U+203E]=111°; approximately 53 % of NEOs have Ω values within ±90° of Ω[U+203E]. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ψ, and longitudes of perihelion π{variant}. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ψ due to secular dynamics associated with inclination-eccentricity-ψ coupling, and the Amors' π{variant} distribution is peaked towards the secularly forced eccentricity vector. The Apollos' ψ distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55 % of the Apollos' ψ values. The Amors' π{variant} distribution peaks near π{variant}[U+203E]=4°; 61% of Amors have π{variant} within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter's. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

AB - We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω[U+203E]=111°; approximately 53 % of NEOs have Ω values within ±90° of Ω[U+203E]. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ψ, and longitudes of perihelion π{variant}. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ψ due to secular dynamics associated with inclination-eccentricity-ψ coupling, and the Amors' π{variant} distribution is peaked towards the secularly forced eccentricity vector. The Apollos' ψ distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55 % of the Apollos' ψ values. The Amors' π{variant} distribution peaks near π{variant}[U+203E]=4°; 61% of Amors have π{variant} within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter's. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

KW - Asteroids, dynamics

KW - Near-Earth objects

UR - http://www.scopus.com/inward/record.url?scp=84890176852&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84890176852&partnerID=8YFLogxK

U2 - 10.1016/j.icarus.2013.10.030

DO - 10.1016/j.icarus.2013.10.030

M3 - Article

AN - SCOPUS:84890176852

VL - 229

SP - 236

EP - 246

JO - Icarus

JF - Icarus

SN - 0019-1035

ER -