Abstract
The possibility to coherently control a quantum rotor is investigated theoretically. The rotor is realized by an antiferromagnetic spin-1 Bose-Einstein condensate, trapped in the optical field of a Fabry-Pérot resonator. By tuning the pumping field of the resonator, coherent control over the rotor is achieved. The technique is illustrated by the numerical simulation of a protocol that transforms the rotor's ground state into a squeezed state. The detection of the squeezed state via measurement of intensity correlations of the cavity field is proposed.
Original language | English (US) |
---|---|
Article number | 031601 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 87 |
Issue number | 3 |
DOIs | |
State | Published - Mar 8 2013 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics