Optimization under uncertainty of Nonlinear Energy Sinks

Ethan Boroson, Samy Missoum, Pierre Olivier Mattei, Christophe Vergez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Nonlinear Energy Sinks (NES) are used to passively reduce the amplitude of vibrations. This reduction is made possible by introducing a nonlinearly stiffening behavior in the NES, which might lead to an irreversible transfer of energy between the main system (e.g., a building) and the NES. However, this irreversible transfer, and therefore the efficiency of the NES, is strongly dependent on the design parameters of the NES. In fact, the efficiency of the NES might be so sensitive to changes in design parameters and other factors (e.g., initial conditions) that it is discontinuous, switching from efficiency to inefficiency for a small perturbation of parameters. For this reason, this work introduces a novel technique for the optimization under uncertainty of NES. The approach is based on a support vector machine classifier, which is insensitive to discontinuities and allows one to efficiently propagate uncertainties. This enables one to efficiently solve an optimization under uncertainty problem. The various techniques presented in this paper are applied to an analytical NES example.

Original languageEnglish (US)
Title of host publication26th Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846414
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume8

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
CountryUnited States
CityBuffalo
Period8/17/148/20/14

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Optimization under uncertainty of Nonlinear Energy Sinks'. Together they form a unique fingerprint.

  • Cite this

    Boroson, E., Missoum, S., Mattei, P. O., & Vergez, C. (2014). Optimization under uncertainty of Nonlinear Energy Sinks. In 26th Conference on Mechanical Vibration and Noise (Proceedings of the ASME Design Engineering Technical Conference; Vol. 8). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC2014-34238