Orbital characterization of GJ1108A system, and comparison of dynamical mass with model-derived mass for resolved binaries.

T. Mizuki, M. Kuzuhara, K. Mede, J. E. Schlieder, M. Janson, T. D. Brandt, T. Hirano, N. Narita, J. Wisniewski, T. Yamada, B. Biller, M. Bonnefoy, J. C. Carson, M. W. McElwain, T. Matsuo, E. L. Turner, S. Mayama, E. Akiyama, T. Uyama, T. NakagawaT. Kudo, N. Kusakabe, J. Hashimoto, L. Abe, W. Brander, S. Egner, M. Feldt, M. Goto, C. A. Grady, O. Guyon, Y. Hayano, M. Hayashi, S. S. Hayashi, T. Henning, K. W. Hodapp, M. Ishii, M. Iye, R. Kandori, G. R. Knapp, J. Kwon, S. Miyama, J. Morino, A. Moro-Martin, T. Nishimura, T. Pyo, E. Serabyn, T. Suenaga, H. Suto, R. Suzuki, Y. H. Takahashi, M. Takami, N. Takato, H. Terada, C. Thalmann, M. Watanabe, H. Takami, T. Usuda, M. Tamura

Research output: Contribution to journalArticlepeer-review


We report an orbital characterization of GJ1108Aab that is a low-mass binary system in pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e=0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (Mdynamical,GJ1108Aa = 0.72 ± 0.04M and Mdynamical,GJ1108Ab = 0.30 ± 0.03M) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider the discrepancy in mass comparison can attribute to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Aug 15 2018
Externally publishedYes


  • Binaries: spectroscopic
  • Binaries: visual
  • Stars: imaging
  • Stars: individual (GJ1108A)
  • Stars: low-mass

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Orbital characterization of GJ1108A system, and comparison of dynamical mass with model-derived mass for resolved binaries.'. Together they form a unique fingerprint.

Cite this