Paleoclimatic warming increased carbon dioxide concentrations

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

If climate-carbon feedbacks are positive, then warming causes changes in carbon dioxide (CO2) sources and sinks that increase CO2 concentrations and create further warming. Previous work using paleoclimatic reconstructions has not disentangled the causal effect of interest from the effects of reverse causality and autocorrelation. The response of CO2 to variations in orbital forcing over the past 800,000 years suggests that millennial-scale climate-carbon feedbacks are significantly positive and significantly greater than century-scale feedbacks. Feedbacks are also significantly greater on 100 year time scales than on 50 year time scales over the past 1500 years. Posterior probability distributions implied by coupled models' predictions and by these paleoclimatic results give a mean of 0.03 for the nondimensional climate-carbon feedback factor and a 90% chance of its being between -0.04 and 0.09. The 70% chance that climate-carbon feedbacks are positive implies that temperature change projections tend to underestimate an emission path's consequences if they do not allow the carbon cycle to respond to changing temperatures.

Original languageEnglish (US)
Article numberD22122
JournalJournal of Geophysical Research Atmospheres
Volume115
Issue number22
DOIs
StatePublished - 2010

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Paleoclimatic warming increased carbon dioxide concentrations'. Together they form a unique fingerprint.

  • Cite this