Patent citation network in nanotechnology (1976-2004)

Xin Li, Hsinchun Chen, Zan Huang, Mihail C. Roco

76 Scopus citations


The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords "full-text" searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.


  • Citation networks
  • Knowledge discovery
  • Knowledge transfer
  • Nanoscale science and engineering (NSE)
  • Nanotechnology
  • Patent analysis
  • Topological analysis

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Bioengineering
  • Modeling and Simulation
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics

Cite this