Planar and textured heterojunction organic photovoltaics based on chloroindium phthalocyanine (ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers

Weining Wang, Diogenes Placencia, Neal R Armstrong

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Planar and textured heterojunction solar cells (OPVs) are reported for vacuum deposited chloroindium phthalocyanine (ClInPc)/C60 heterojunctions, and their response compared to previously explored OPVs based on titanyl phthalocyanine (TiOPc)/C60 heterojunctions. As for TiOPc/C60 OPVs, the photoelectrical activity of ClInPc/C60 OPVs extends well into the near infrared, with good activity out to ca. 900 nm. As-deposited ClInPc films (Phase I) produce open-circuit photopotentials, VOC as high as ca. 0.8 V (Phase I form of ClInPc), ca. 0.15 V larger than previously observed for Phase I TiOPc/C60 OPVs. The offsets in frontier orbital energies (EHOMOPc-ELUMOC60) revealed by UV-photoemission studies (UPS) are slightly smaller for ClInPc/C60 versus TiOPc/C 60 heterojunctions, and the interface dipole contribution (shift in local vacuum level) to these offsets is in the opposite direction for ClInPc/C60 versus TiOPc/C60 heterojunctions, or missing altogether, suggesting differences in molecular interaction at the Pc/C 60 interface. Higher VOC values are correlated with lower reverse saturation currents, Jo, for ClInPc/C60, versus other Pc or pentacene/C60 heterojunctions, suggesting weak intermolecular interactions at the ClInPc/C60 interface and large barriers to dark charge injection. Solvent annealing of the ClInPc films enhances the near-IR response, and textures the Pc film, enhancing the Pc/C 60 interfacial contact area and the short-circuit photocurrent, JSC. JSC under AM 1.5 illumination conditions was estimated by integration of the incident photon current efficiency (IPCE) response, to compare relative power conversion efficiencies for the two different device types. The estimated efficiency of Phase I ClInPc/C 60 OPVs is ca. 2.6%. The estimated AM 1.5 efficiency of ClInPc/C 60 OPVs with solvent annealed Pc layers is estimated to be ca. 3.3%, arising from the extensive texturing achieved of the Pc layer, which nearly doubles JSC for the Phase II versus Phase I Pc films.

Original languageEnglish (US)
Pages (from-to)383-393
Number of pages11
JournalOrganic Electronics: physics, materials, applications
Volume12
Issue number2
DOIs
StatePublished - Feb 2011

Fingerprint

Heterojunctions
heterojunctions
volatile organic compounds
Volatile organic compounds
Vacuum
vacuum
Charge injection
Molecular interactions
Texturing
short circuits
Photoemission
molecular interactions
Photocurrents
Short circuit currents
Conversion efficiency
photocurrents
phthalocyanine
Solar cells
photoelectric emission
Photons

Keywords

  • Heterojunction
  • Interface dipole
  • Near-IR
  • Organic solar cell
  • Phthalocyanine
  • UV-photoemission

ASJC Scopus subject areas

  • Biomaterials
  • Electronic, Optical and Magnetic Materials
  • Materials Chemistry
  • Electrical and Electronic Engineering
  • Chemistry(all)
  • Condensed Matter Physics

Cite this

@article{671626782ad6459688d835171f892a4c,
title = "Planar and textured heterojunction organic photovoltaics based on chloroindium phthalocyanine (ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers",
abstract = "Planar and textured heterojunction solar cells (OPVs) are reported for vacuum deposited chloroindium phthalocyanine (ClInPc)/C60 heterojunctions, and their response compared to previously explored OPVs based on titanyl phthalocyanine (TiOPc)/C60 heterojunctions. As for TiOPc/C60 OPVs, the photoelectrical activity of ClInPc/C60 OPVs extends well into the near infrared, with good activity out to ca. 900 nm. As-deposited ClInPc films (Phase I) produce open-circuit photopotentials, VOC as high as ca. 0.8 V (Phase I form of ClInPc), ca. 0.15 V larger than previously observed for Phase I TiOPc/C60 OPVs. The offsets in frontier orbital energies (EHOMOPc-ELUMOC60) revealed by UV-photoemission studies (UPS) are slightly smaller for ClInPc/C60 versus TiOPc/C 60 heterojunctions, and the interface dipole contribution (shift in local vacuum level) to these offsets is in the opposite direction for ClInPc/C60 versus TiOPc/C60 heterojunctions, or missing altogether, suggesting differences in molecular interaction at the Pc/C 60 interface. Higher VOC values are correlated with lower reverse saturation currents, Jo, for ClInPc/C60, versus other Pc or pentacene/C60 heterojunctions, suggesting weak intermolecular interactions at the ClInPc/C60 interface and large barriers to dark charge injection. Solvent annealing of the ClInPc films enhances the near-IR response, and textures the Pc film, enhancing the Pc/C 60 interfacial contact area and the short-circuit photocurrent, JSC. JSC under AM 1.5 illumination conditions was estimated by integration of the incident photon current efficiency (IPCE) response, to compare relative power conversion efficiencies for the two different device types. The estimated efficiency of Phase I ClInPc/C 60 OPVs is ca. 2.6{\%}. The estimated AM 1.5 efficiency of ClInPc/C 60 OPVs with solvent annealed Pc layers is estimated to be ca. 3.3{\%}, arising from the extensive texturing achieved of the Pc layer, which nearly doubles JSC for the Phase II versus Phase I Pc films.",
keywords = "Heterojunction, Interface dipole, Near-IR, Organic solar cell, Phthalocyanine, UV-photoemission",
author = "Weining Wang and Diogenes Placencia and Armstrong, {Neal R}",
year = "2011",
month = "2",
doi = "10.1016/j.orgel.2010.11.015",
language = "English (US)",
volume = "12",
pages = "383--393",
journal = "Organic Electronics",
issn = "1566-1199",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Planar and textured heterojunction organic photovoltaics based on chloroindium phthalocyanine (ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers

AU - Wang, Weining

AU - Placencia, Diogenes

AU - Armstrong, Neal R

PY - 2011/2

Y1 - 2011/2

N2 - Planar and textured heterojunction solar cells (OPVs) are reported for vacuum deposited chloroindium phthalocyanine (ClInPc)/C60 heterojunctions, and their response compared to previously explored OPVs based on titanyl phthalocyanine (TiOPc)/C60 heterojunctions. As for TiOPc/C60 OPVs, the photoelectrical activity of ClInPc/C60 OPVs extends well into the near infrared, with good activity out to ca. 900 nm. As-deposited ClInPc films (Phase I) produce open-circuit photopotentials, VOC as high as ca. 0.8 V (Phase I form of ClInPc), ca. 0.15 V larger than previously observed for Phase I TiOPc/C60 OPVs. The offsets in frontier orbital energies (EHOMOPc-ELUMOC60) revealed by UV-photoemission studies (UPS) are slightly smaller for ClInPc/C60 versus TiOPc/C 60 heterojunctions, and the interface dipole contribution (shift in local vacuum level) to these offsets is in the opposite direction for ClInPc/C60 versus TiOPc/C60 heterojunctions, or missing altogether, suggesting differences in molecular interaction at the Pc/C 60 interface. Higher VOC values are correlated with lower reverse saturation currents, Jo, for ClInPc/C60, versus other Pc or pentacene/C60 heterojunctions, suggesting weak intermolecular interactions at the ClInPc/C60 interface and large barriers to dark charge injection. Solvent annealing of the ClInPc films enhances the near-IR response, and textures the Pc film, enhancing the Pc/C 60 interfacial contact area and the short-circuit photocurrent, JSC. JSC under AM 1.5 illumination conditions was estimated by integration of the incident photon current efficiency (IPCE) response, to compare relative power conversion efficiencies for the two different device types. The estimated efficiency of Phase I ClInPc/C 60 OPVs is ca. 2.6%. The estimated AM 1.5 efficiency of ClInPc/C 60 OPVs with solvent annealed Pc layers is estimated to be ca. 3.3%, arising from the extensive texturing achieved of the Pc layer, which nearly doubles JSC for the Phase II versus Phase I Pc films.

AB - Planar and textured heterojunction solar cells (OPVs) are reported for vacuum deposited chloroindium phthalocyanine (ClInPc)/C60 heterojunctions, and their response compared to previously explored OPVs based on titanyl phthalocyanine (TiOPc)/C60 heterojunctions. As for TiOPc/C60 OPVs, the photoelectrical activity of ClInPc/C60 OPVs extends well into the near infrared, with good activity out to ca. 900 nm. As-deposited ClInPc films (Phase I) produce open-circuit photopotentials, VOC as high as ca. 0.8 V (Phase I form of ClInPc), ca. 0.15 V larger than previously observed for Phase I TiOPc/C60 OPVs. The offsets in frontier orbital energies (EHOMOPc-ELUMOC60) revealed by UV-photoemission studies (UPS) are slightly smaller for ClInPc/C60 versus TiOPc/C 60 heterojunctions, and the interface dipole contribution (shift in local vacuum level) to these offsets is in the opposite direction for ClInPc/C60 versus TiOPc/C60 heterojunctions, or missing altogether, suggesting differences in molecular interaction at the Pc/C 60 interface. Higher VOC values are correlated with lower reverse saturation currents, Jo, for ClInPc/C60, versus other Pc or pentacene/C60 heterojunctions, suggesting weak intermolecular interactions at the ClInPc/C60 interface and large barriers to dark charge injection. Solvent annealing of the ClInPc films enhances the near-IR response, and textures the Pc film, enhancing the Pc/C 60 interfacial contact area and the short-circuit photocurrent, JSC. JSC under AM 1.5 illumination conditions was estimated by integration of the incident photon current efficiency (IPCE) response, to compare relative power conversion efficiencies for the two different device types. The estimated efficiency of Phase I ClInPc/C 60 OPVs is ca. 2.6%. The estimated AM 1.5 efficiency of ClInPc/C 60 OPVs with solvent annealed Pc layers is estimated to be ca. 3.3%, arising from the extensive texturing achieved of the Pc layer, which nearly doubles JSC for the Phase II versus Phase I Pc films.

KW - Heterojunction

KW - Interface dipole

KW - Near-IR

KW - Organic solar cell

KW - Phthalocyanine

KW - UV-photoemission

UR - http://www.scopus.com/inward/record.url?scp=78650933599&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78650933599&partnerID=8YFLogxK

U2 - 10.1016/j.orgel.2010.11.015

DO - 10.1016/j.orgel.2010.11.015

M3 - Article

AN - SCOPUS:78650933599

VL - 12

SP - 383

EP - 393

JO - Organic Electronics

JF - Organic Electronics

SN - 1566-1199

IS - 2

ER -