PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface

B. D. Collins, J. W. Jacobs

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Investigations of the Richtmyer-Meshkov instability carried out in shock tubes have traditionally used membranes to separate the two gases. The use of membranes, in addition to introducing other experimental difficulties, impedes the use of advanced visualization techniques such as planar laser-induced fluorescence (PLIF). Jones and Jacobs (1997) recently developed a new technique by which a perturbed, membrane-free gas-gas interface can be created in a shock tube. The gases enter the shock tube from opposite ends and exit through two small slots on opposite sides of the test section, forming a stagnation point flow at the interface location. A gentle rocking motion of the shock tube then provides the initial perturbation in the form of a standing wave. The original investigation using this technique utilized dense for seeding for visualization, which allowed large-scale effects to be observed, but was incapable of resolving smaller-scale features. PLIF visualization is used in the present study to investigate the instability generated by two incident shock strengths (Ms = 1.11 and 1.21), yielding very clear digital images of the flow. Early-time growth rate measurements obtained from these experiments are found to be in excellent agreement with incompressible linear stability theory (appropriately adjusted for a diffuse interface). Very good agreement is also found between the late-time amplitude measurements and the nonlinear models of Zhang and Sohn (1997) and Sadot et al. (1998). Comparison of images from the Ms = 1.11 and 1.21 sequences reveals a significant increase in the amount of turbulent mixing in the higher-Mach-number experiments, suggesting that a mixing transition has occurred.

Original languageEnglish (US)
Pages (from-to)113-136
Number of pages24
JournalJournal of Fluid Mechanics
Volume464
DOIs
StatePublished - Jul 29 2002

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF<sub>6</sub> interface'. Together they form a unique fingerprint.

Cite this