Pollen- and seed-mediated transgene flow in commercial cotton seed production fields

Shannon Heuberger, Christa Ellers-Kirk, Bruce E. Tabashnik, Yves Carrière

Research output: Contribution to journalArticle

51 Scopus citations

Abstract

Background: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt) cotton is planted on millions of hectares annually and is a potential source of transgene flow. Methodology/Principal Findings: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L.) seed production fields (some transgenic for herbicide resistance, some not) for gene flow of the Bt cotton cry1Ac transgene. We investigated seedmediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollenmediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. Conclusions/Significance: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

Original languageEnglish (US)
Article numbere14128
JournalPloS one
Volume5
Issue number11
DOIs
StatePublished - Dec 10 2010

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this