Predicting Lyα and Mg II fluxes from K and M dwarfs using galaxy evolution explorer ultraviolet photometry

Evgenya L. Shkolnik, Kristina A. Rolph, Sarah Peacock, Travis S. Barman

Research output: Contribution to journalArticle

20 Scopus citations

Abstract

A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 A˚, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

Original languageEnglish (US)
Article numberL20
JournalAstrophysical Journal Letters
Volume796
Issue number1
DOIs
StatePublished - Nov 20 2014

Keywords

  • planet-star interactions
  • stars: activity
  • stars: atmospheres
  • stars: chromospheres

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Predicting Lyα and Mg II fluxes from K and M dwarfs using galaxy evolution explorer ultraviolet photometry'. Together they form a unique fingerprint.

  • Cite this