Prediction of composite laminate strength properties using a refined zigzag plate element

A. Barut, E. Madenci, A. Tessler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This study presents an approach that uses the refined zigzag element, RZE{2,2} in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE{2,2} -based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.

Original languageEnglish (US)
Title of host publication54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
DOIs
StatePublished - Aug 2 2013
Event54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Boston, MA, United States
Duration: Apr 8 2013Apr 11 2013

Publication series

Name54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Other

Other54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
CountryUnited States
CityBoston, MA
Period4/8/134/11/13

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanics of Materials
  • Building and Construction
  • Architecture

Fingerprint Dive into the research topics of 'Prediction of composite laminate strength properties using a refined zigzag plate element'. Together they form a unique fingerprint.

  • Cite this

    Barut, A., Madenci, E., & Tessler, A. (2013). Prediction of composite laminate strength properties using a refined zigzag plate element. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference). https://doi.org/10.2514/6.2013-1539