Prediction of global warming potentials through computational chemistry - Testing robustness of methodology through experimental comparisons

Paul Blowers, Kyle Hollingshead

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Global warming is a scientifically based concern regarding addition of naturally occurring and anthropogenic chemicals to the troposphere where the species can trap infrared energy. Predicting global warming potentials requires highly accurate rate constant measurements for the reactions of the chemicals with hydroxyl radicals, which is the first and rate limiting step in tropospheric degradation. Radiative forcing, the amount of energy that can be captured by the chemicals per square meter of exposed area for a given concentration, requires spectroscopic information about peak locations and intensities, which are then aggregated into absorption cross sections. These values are then used in atmospheric modeling simulations to determine the radiative forcing. Both kinetic and spectroscopic measurements have many potential experimental difficulties, which makes predicting global warming potentials (GWPs) from theory attractive. We build on our previous work by examining an emerging class of compounds, fluorinated ethers, using theoretical chemistry to predict GWPs. Previous work investigated CH2F2 and found excellent comparison to experiment for predicting all intermediate steps for GWPs, including kinetic degradation rates with hydroxyl radical under low temperature tropospheric conditions, atmospheric lifetime estimates, radiative forcing in the atmospheric window, and overall GWPs at 20 year, 100 year, and 500 year time horizons. We find good agreement for all parameters for the hydrofluoroethers compared to experimental values. Radiative forcing estimates are also in good agreement with available experimental results. Finally, we now have a larger database of chemicals where we have verified our methodology of accurately predicting global warming potentials using theory.

Original languageEnglish (US)
Title of host publicationAIChE Annual Meeting, Conference Proceedings
StatePublished - 2008
Event2008 AIChE Spring National Meeting, Conference - New Orleans, LA, United States
Duration: Apr 6 2008Apr 10 2008

Other

Other2008 AIChE Spring National Meeting, Conference
CountryUnited States
CityNew Orleans, LA
Period4/6/084/10/08

Fingerprint

Computational chemistry
Global warming
Testing
Hydroxyl Radical
Degradation
Kinetics
Troposphere
Ethers
Rate constants
Infrared radiation
Computer simulation

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Prediction of global warming potentials through computational chemistry - Testing robustness of methodology through experimental comparisons. / Blowers, Paul; Hollingshead, Kyle.

AIChE Annual Meeting, Conference Proceedings. 2008.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Blowers, P & Hollingshead, K 2008, Prediction of global warming potentials through computational chemistry - Testing robustness of methodology through experimental comparisons. in AIChE Annual Meeting, Conference Proceedings. 2008 AIChE Spring National Meeting, Conference, New Orleans, LA, United States, 4/6/08.
@inproceedings{b086d7b20f2642259eb379ff5ab2c1a9,
title = "Prediction of global warming potentials through computational chemistry - Testing robustness of methodology through experimental comparisons",
abstract = "Global warming is a scientifically based concern regarding addition of naturally occurring and anthropogenic chemicals to the troposphere where the species can trap infrared energy. Predicting global warming potentials requires highly accurate rate constant measurements for the reactions of the chemicals with hydroxyl radicals, which is the first and rate limiting step in tropospheric degradation. Radiative forcing, the amount of energy that can be captured by the chemicals per square meter of exposed area for a given concentration, requires spectroscopic information about peak locations and intensities, which are then aggregated into absorption cross sections. These values are then used in atmospheric modeling simulations to determine the radiative forcing. Both kinetic and spectroscopic measurements have many potential experimental difficulties, which makes predicting global warming potentials (GWPs) from theory attractive. We build on our previous work by examining an emerging class of compounds, fluorinated ethers, using theoretical chemistry to predict GWPs. Previous work investigated CH2F2 and found excellent comparison to experiment for predicting all intermediate steps for GWPs, including kinetic degradation rates with hydroxyl radical under low temperature tropospheric conditions, atmospheric lifetime estimates, radiative forcing in the atmospheric window, and overall GWPs at 20 year, 100 year, and 500 year time horizons. We find good agreement for all parameters for the hydrofluoroethers compared to experimental values. Radiative forcing estimates are also in good agreement with available experimental results. Finally, we now have a larger database of chemicals where we have verified our methodology of accurately predicting global warming potentials using theory.",
author = "Paul Blowers and Kyle Hollingshead",
year = "2008",
language = "English (US)",
isbn = "9780816910236",
booktitle = "AIChE Annual Meeting, Conference Proceedings",

}

TY - GEN

T1 - Prediction of global warming potentials through computational chemistry - Testing robustness of methodology through experimental comparisons

AU - Blowers, Paul

AU - Hollingshead, Kyle

PY - 2008

Y1 - 2008

N2 - Global warming is a scientifically based concern regarding addition of naturally occurring and anthropogenic chemicals to the troposphere where the species can trap infrared energy. Predicting global warming potentials requires highly accurate rate constant measurements for the reactions of the chemicals with hydroxyl radicals, which is the first and rate limiting step in tropospheric degradation. Radiative forcing, the amount of energy that can be captured by the chemicals per square meter of exposed area for a given concentration, requires spectroscopic information about peak locations and intensities, which are then aggregated into absorption cross sections. These values are then used in atmospheric modeling simulations to determine the radiative forcing. Both kinetic and spectroscopic measurements have many potential experimental difficulties, which makes predicting global warming potentials (GWPs) from theory attractive. We build on our previous work by examining an emerging class of compounds, fluorinated ethers, using theoretical chemistry to predict GWPs. Previous work investigated CH2F2 and found excellent comparison to experiment for predicting all intermediate steps for GWPs, including kinetic degradation rates with hydroxyl radical under low temperature tropospheric conditions, atmospheric lifetime estimates, radiative forcing in the atmospheric window, and overall GWPs at 20 year, 100 year, and 500 year time horizons. We find good agreement for all parameters for the hydrofluoroethers compared to experimental values. Radiative forcing estimates are also in good agreement with available experimental results. Finally, we now have a larger database of chemicals where we have verified our methodology of accurately predicting global warming potentials using theory.

AB - Global warming is a scientifically based concern regarding addition of naturally occurring and anthropogenic chemicals to the troposphere where the species can trap infrared energy. Predicting global warming potentials requires highly accurate rate constant measurements for the reactions of the chemicals with hydroxyl radicals, which is the first and rate limiting step in tropospheric degradation. Radiative forcing, the amount of energy that can be captured by the chemicals per square meter of exposed area for a given concentration, requires spectroscopic information about peak locations and intensities, which are then aggregated into absorption cross sections. These values are then used in atmospheric modeling simulations to determine the radiative forcing. Both kinetic and spectroscopic measurements have many potential experimental difficulties, which makes predicting global warming potentials (GWPs) from theory attractive. We build on our previous work by examining an emerging class of compounds, fluorinated ethers, using theoretical chemistry to predict GWPs. Previous work investigated CH2F2 and found excellent comparison to experiment for predicting all intermediate steps for GWPs, including kinetic degradation rates with hydroxyl radical under low temperature tropospheric conditions, atmospheric lifetime estimates, radiative forcing in the atmospheric window, and overall GWPs at 20 year, 100 year, and 500 year time horizons. We find good agreement for all parameters for the hydrofluoroethers compared to experimental values. Radiative forcing estimates are also in good agreement with available experimental results. Finally, we now have a larger database of chemicals where we have verified our methodology of accurately predicting global warming potentials using theory.

UR - http://www.scopus.com/inward/record.url?scp=80053778241&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053778241&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9780816910236

BT - AIChE Annual Meeting, Conference Proceedings

ER -