Programming nonreciprocity and reversibility in multistable mechanical metamaterials

Gabriele Librandi, Eleonora Tubaldi, Katia Bertoldi

Research output: Contribution to journalArticlepeer-review

Abstract

Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular, networks of nonlinear bistable elements with asymmetric energy landscapes have recently been shown to support unidirectional transition waves. However, in these systems energy can be transferred only when the elements switch from the higher to the lower energy well, allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently programmed and are not mutually exclusive. By connecting shallow arches with symmetric energy wells and decreasing energy barriers, we design a reversible mechanical diode that can sustain multiple signal transmissions. Further, by alternating arches with symmetric and asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of different transition waves in opposite directions.

Original languageEnglish (US)
Article number3454
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Programming nonreciprocity and reversibility in multistable mechanical metamaterials'. Together they form a unique fingerprint.

Cite this