Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging

Christopher Scarfone, William C. Lavely, Anthony J. Cmelak, Dominique Delbeke, William H. Martin, Dean Billheimer, Dennis E. Hallahan

Research output: Contribution to journalArticle

169 Scopus citations

Abstract

The aim of this investigation was to evaluate the influence and accuracy of 18F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Methods: Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with 18F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the 18F-FDG PET and CT planning image datasets. 18F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. Results: One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on 18F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, 18F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, 18F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Conclusion: Inclusion of 18F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.

Original languageEnglish (US)
Pages (from-to)543-552
Number of pages10
JournalJournal of Nuclear Medicine
Volume45
Issue number4
StatePublished - Apr 1 2004
Externally publishedYes

Keywords

  • Conformal radiotherapy
  • Head and neck cancer
  • Nuclear medicine treatment planning
  • PET
  • Radiotherapy targets

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging'. Together they form a unique fingerprint.

  • Cite this

    Scarfone, C., Lavely, W. C., Cmelak, A. J., Delbeke, D., Martin, W. H., Billheimer, D., & Hallahan, D. E. (2004). Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. Journal of Nuclear Medicine, 45(4), 543-552.