Pulse energy probability density functions for long-haul optical fiber transmission systems by using instantons and edgeworth expansion

Miloš Ivković, Ivan Djordjević, Predrag M. Rajković, Bane Vasić

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

In this work, we use a new approach to model pulse energy in long-haul optical fiber transmission systems. Existing approaches for obtaining probability density functions (pdfs) rely on numerical simulations or analytical approximations. Numerical simulations make far tails of the pdfs difficult to obtain, while analytical approximations are often inaccurate, as they neglect nonlinear interaction between pulses and noise. Our approach combines the instanton method from statistical mechanics to model far tails of the pdfs, with numerical simulations to refine the middle part of the pdfs. We combine the two methods by using an orthogonal polynomial expansion constructed specifically for this problem. We demonstrate the approach on an example of a specific submarine transmission system.

Original languageEnglish (US)
Pages (from-to)1604-1606
Number of pages3
JournalIEEE Photonics Technology Letters
Volume19
Issue number20
DOIs
StatePublished - Oct 1 2007

Keywords

  • Edgeworth expansion
  • Instantons
  • Optical fiber transmission
  • Probability density function (pdf)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Pulse energy probability density functions for long-haul optical fiber transmission systems by using instantons and edgeworth expansion'. Together they form a unique fingerprint.

  • Cite this