Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic 11-demethyltomaymycin and its biologically inactive metabolite oxotomaymycin by streptomyces achromogenes

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H] tyrosine are consistent with a "meta" or extradiol cleavage of 6, 7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both of the β hydrogens of this amino acid are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11 -demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.

Original languageEnglish (US)
Pages (from-to)3760-3769
Number of pages10
JournalBiochemistry
Volume15
Issue number17
StatePublished - 1976
Externally publishedYes

Fingerprint

Biosynthesis
Streptomyces
Metabolites
Anti-Bacterial Agents
Tyrosine
Tryptophan
Methionine
Hydroxylation
Anthramycin
oxotomaymycin
11-demethyltomaymycin
Bz-423
Carbon
Lincomycin
Kynurenine
Tritium
Hydrogen
Cell Culture Techniques
Experiments
Amino Acids

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{63c233c5609c42fbb5a02427ad9e9131,
title = "Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic 11-demethyltomaymycin and its biologically inactive metabolite oxotomaymycin by streptomyces achromogenes",
abstract = "11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H] tyrosine are consistent with a {"}meta{"} or extradiol cleavage of 6, 7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both of the β hydrogens of this amino acid are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11 -demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.",
author = "Laurence Hurley",
year = "1976",
language = "English (US)",
volume = "15",
pages = "3760--3769",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "17",

}

TY - JOUR

T1 - Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic 11-demethyltomaymycin and its biologically inactive metabolite oxotomaymycin by streptomyces achromogenes

AU - Hurley, Laurence

PY - 1976

Y1 - 1976

N2 - 11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H] tyrosine are consistent with a "meta" or extradiol cleavage of 6, 7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both of the β hydrogens of this amino acid are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11 -demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.

AB - 11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H] tyrosine are consistent with a "meta" or extradiol cleavage of 6, 7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both of the β hydrogens of this amino acid are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11 -demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.

UR - http://www.scopus.com/inward/record.url?scp=0017191585&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017191585&partnerID=8YFLogxK

M3 - Article

C2 - 1085163

AN - SCOPUS:0017191585

VL - 15

SP - 3760

EP - 3769

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 17

ER -