Quantifying mesoscale soil moisture with the cosmic-ray rover

B. Chrisman, Marek G Zreda

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at an average of 1.7 km<sup>2</sup> resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m<sup>3</sup> m<sup>-3</sup>, as a function of the mean, between 0.06 m<sup>3</sup> m<sup>-3</sup> and 0.14 m<sup>3</sup> m<sup>-3</sup>. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed, and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors (SMOS) with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profiles allow for basin-wide mass balance calculation of evapotranspiration, which amounted to 241 mm in 2012. Generating soil moisture maps with a cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite soil moisture data products and may also aid in various large-scale hydrologic studies.

Original languageEnglish (US)
Pages (from-to)5097-5108
Number of pages12
JournalHydrology and Earth System Sciences
Volume17
Issue number12
DOIs
StatePublished - Dec 17 2013

Fingerprint

cosmic ray
soil moisture
SMOS
satellite mission
surface flux
basin
interpolation
evapotranspiration
mass balance
pixel
monsoon
drought
probe
moisture
sensor
calibration

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Water Science and Technology

Cite this

Quantifying mesoscale soil moisture with the cosmic-ray rover. / Chrisman, B.; Zreda, Marek G.

In: Hydrology and Earth System Sciences, Vol. 17, No. 12, 17.12.2013, p. 5097-5108.

Research output: Contribution to journalArticle

@article{424f719565374001aa459cb4921d975b,
title = "Quantifying mesoscale soil moisture with the cosmic-ray rover",
abstract = "Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at an average of 1.7 km2 resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m3 m-3, as a function of the mean, between 0.06 m3 m-3 and 0.14 m3 m-3. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed, and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors (SMOS) with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profiles allow for basin-wide mass balance calculation of evapotranspiration, which amounted to 241 mm in 2012. Generating soil moisture maps with a cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite soil moisture data products and may also aid in various large-scale hydrologic studies.",
author = "B. Chrisman and Zreda, {Marek G}",
year = "2013",
month = "12",
day = "17",
doi = "10.5194/hess-17-5097-2013",
language = "English (US)",
volume = "17",
pages = "5097--5108",
journal = "Hydrology and Earth System Sciences",
issn = "1027-5606",
publisher = "European Geosciences Union",
number = "12",

}

TY - JOUR

T1 - Quantifying mesoscale soil moisture with the cosmic-ray rover

AU - Chrisman, B.

AU - Zreda, Marek G

PY - 2013/12/17

Y1 - 2013/12/17

N2 - Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at an average of 1.7 km2 resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m3 m-3, as a function of the mean, between 0.06 m3 m-3 and 0.14 m3 m-3. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed, and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors (SMOS) with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profiles allow for basin-wide mass balance calculation of evapotranspiration, which amounted to 241 mm in 2012. Generating soil moisture maps with a cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite soil moisture data products and may also aid in various large-scale hydrologic studies.

AB - Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at an average of 1.7 km2 resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m3 m-3, as a function of the mean, between 0.06 m3 m-3 and 0.14 m3 m-3. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed, and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors (SMOS) with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profiles allow for basin-wide mass balance calculation of evapotranspiration, which amounted to 241 mm in 2012. Generating soil moisture maps with a cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite soil moisture data products and may also aid in various large-scale hydrologic studies.

UR - http://www.scopus.com/inward/record.url?scp=84901304179&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901304179&partnerID=8YFLogxK

U2 - 10.5194/hess-17-5097-2013

DO - 10.5194/hess-17-5097-2013

M3 - Article

AN - SCOPUS:84901304179

VL - 17

SP - 5097

EP - 5108

JO - Hydrology and Earth System Sciences

JF - Hydrology and Earth System Sciences

SN - 1027-5606

IS - 12

ER -