Realizing higher-level gauge symmetries in string theory: New embeddings for string GUTs

Keith R Dienes, John March-Russell

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries Gk employ the so-called diagonal embeddings Gk ⊂ G × G × ⋯ × G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E6 at levels k = 2, 3, 4 (and in some cases up to k = 7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a by-product, we also prove that it is impossible to realize SO(10) at levels k > 4 in string theory. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).

Original languageEnglish (US)
Pages (from-to)113-172
Number of pages60
JournalNuclear Physics B
Volume479
Issue number1-2
StatePublished - Nov 11 1996
Externally publishedYes

Fingerprint

grand unified theory
string theory
embedding
strings
symmetry
subgroups
approximation
lists

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Realizing higher-level gauge symmetries in string theory : New embeddings for string GUTs. / Dienes, Keith R; March-Russell, John.

In: Nuclear Physics B, Vol. 479, No. 1-2, 11.11.1996, p. 113-172.

Research output: Contribution to journalArticle

@article{1abcbf39102c43d79f49a22d59827e36,
title = "Realizing higher-level gauge symmetries in string theory: New embeddings for string GUTs",
abstract = "We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries Gk employ the so-called diagonal embeddings Gk ⊂ G × G × ⋯ × G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E6 at levels k = 2, 3, 4 (and in some cases up to k = 7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a by-product, we also prove that it is impossible to realize SO(10) at levels k > 4 in string theory. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).",
author = "Dienes, {Keith R} and John March-Russell",
year = "1996",
month = "11",
day = "11",
language = "English (US)",
volume = "479",
pages = "113--172",
journal = "Nuclear Physics B",
issn = "0550-3213",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Realizing higher-level gauge symmetries in string theory

T2 - New embeddings for string GUTs

AU - Dienes, Keith R

AU - March-Russell, John

PY - 1996/11/11

Y1 - 1996/11/11

N2 - We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries Gk employ the so-called diagonal embeddings Gk ⊂ G × G × ⋯ × G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E6 at levels k = 2, 3, 4 (and in some cases up to k = 7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a by-product, we also prove that it is impossible to realize SO(10) at levels k > 4 in string theory. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).

AB - We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries Gk employ the so-called diagonal embeddings Gk ⊂ G × G × ⋯ × G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E6 at levels k = 2, 3, 4 (and in some cases up to k = 7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a by-product, we also prove that it is impossible to realize SO(10) at levels k > 4 in string theory. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).

UR - http://www.scopus.com/inward/record.url?scp=0030580253&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030580253&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0030580253

VL - 479

SP - 113

EP - 172

JO - Nuclear Physics B

JF - Nuclear Physics B

SN - 0550-3213

IS - 1-2

ER -