Receptivity to kinetic fluctuations: A multiple scales approach

Luke D. Edwards, Anatoli Tumin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin1 (AIAA J., 2017) solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the neutral point of the second Mack mode. Here we adopt a slightly more general inhomogeneous multiple scales (IMS) approach, based on a WKB ansatz, which requires fewer assumptions about the locus of primary excitation. The approach is modeled after the one taken by Luchini2 (AIAA J., 2017) to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-speed, high-enthalpy, flat plate boundary layers (see Edwards and Tumin3) whose spectra exhibit nuanced behavior near the generation point, such as first Mack mode instabilities and near-neutral evolution over moderate length scales.

Original languageEnglish (US)
Title of host publicationAIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Edition210059
ISBN (Print)9781624105241
DOIs
StatePublished - Jan 1 2018
EventAIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States
Duration: Jan 8 2018Jan 12 2018

Other

OtherAIAA Aerospace Sciences Meeting, 2018
CountryUnited States
CityKissimmee
Period1/8/181/12/18

Fingerprint

Boundary layers
Kinetics
Swept wings
Enthalpy
Hydrodynamics
Fluxes

ASJC Scopus subject areas

  • Aerospace Engineering

Cite this

Edwards, L. D., & Tumin, A. (2018). Receptivity to kinetic fluctuations: A multiple scales approach. In AIAA Aerospace Sciences Meeting (210059 ed.). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2018-1075

Receptivity to kinetic fluctuations : A multiple scales approach. / Edwards, Luke D.; Tumin, Anatoli.

AIAA Aerospace Sciences Meeting. 210059. ed. American Institute of Aeronautics and Astronautics Inc, AIAA, 2018.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Edwards, LD & Tumin, A 2018, Receptivity to kinetic fluctuations: A multiple scales approach. in AIAA Aerospace Sciences Meeting. 210059 edn, American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA Aerospace Sciences Meeting, 2018, Kissimmee, United States, 1/8/18. https://doi.org/10.2514/6.2018-1075
Edwards LD, Tumin A. Receptivity to kinetic fluctuations: A multiple scales approach. In AIAA Aerospace Sciences Meeting. 210059 ed. American Institute of Aeronautics and Astronautics Inc, AIAA. 2018 https://doi.org/10.2514/6.2018-1075
Edwards, Luke D. ; Tumin, Anatoli. / Receptivity to kinetic fluctuations : A multiple scales approach. AIAA Aerospace Sciences Meeting. 210059. ed. American Institute of Aeronautics and Astronautics Inc, AIAA, 2018.
@inproceedings{05bca9197c5b4a4b94e620e430a559e4,
title = "Receptivity to kinetic fluctuations: A multiple scales approach",
abstract = "The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin1 (AIAA J., 2017) solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the neutral point of the second Mack mode. Here we adopt a slightly more general inhomogeneous multiple scales (IMS) approach, based on a WKB ansatz, which requires fewer assumptions about the locus of primary excitation. The approach is modeled after the one taken by Luchini2 (AIAA J., 2017) to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-speed, high-enthalpy, flat plate boundary layers (see Edwards and Tumin3) whose spectra exhibit nuanced behavior near the generation point, such as first Mack mode instabilities and near-neutral evolution over moderate length scales.",
author = "Edwards, {Luke D.} and Anatoli Tumin",
year = "2018",
month = "1",
day = "1",
doi = "10.2514/6.2018-1075",
language = "English (US)",
isbn = "9781624105241",
booktitle = "AIAA Aerospace Sciences Meeting",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
edition = "210059",

}

TY - GEN

T1 - Receptivity to kinetic fluctuations

T2 - A multiple scales approach

AU - Edwards, Luke D.

AU - Tumin, Anatoli

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin1 (AIAA J., 2017) solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the neutral point of the second Mack mode. Here we adopt a slightly more general inhomogeneous multiple scales (IMS) approach, based on a WKB ansatz, which requires fewer assumptions about the locus of primary excitation. The approach is modeled after the one taken by Luchini2 (AIAA J., 2017) to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-speed, high-enthalpy, flat plate boundary layers (see Edwards and Tumin3) whose spectra exhibit nuanced behavior near the generation point, such as first Mack mode instabilities and near-neutral evolution over moderate length scales.

AB - The receptivity of high-speed compressible boundary layers to kinetic fluctuations (KF) is considered within the framework of fluctuating hydrodynamics. The formulation is based on the idea that KF-induced dissipative fluxes may lead to the generation of unstable modes in the boundary layer. Fedorov and Tumin1 (AIAA J., 2017) solved the receptivity problem using an asymptotic matching approach which utilized a resonant inner solution in the vicinity of the neutral point of the second Mack mode. Here we adopt a slightly more general inhomogeneous multiple scales (IMS) approach, based on a WKB ansatz, which requires fewer assumptions about the locus of primary excitation. The approach is modeled after the one taken by Luchini2 (AIAA J., 2017) to study low speed incompressible boundary layers over a swept wing. The new framework is used to study examples of high-speed, high-enthalpy, flat plate boundary layers (see Edwards and Tumin3) whose spectra exhibit nuanced behavior near the generation point, such as first Mack mode instabilities and near-neutral evolution over moderate length scales.

UR - http://www.scopus.com/inward/record.url?scp=85044409533&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044409533&partnerID=8YFLogxK

U2 - 10.2514/6.2018-1075

DO - 10.2514/6.2018-1075

M3 - Conference contribution

AN - SCOPUS:85044409533

SN - 9781624105241

BT - AIAA Aerospace Sciences Meeting

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -