Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes

Research output: Chapter in Book/Report/Conference proceedingChapter

32 Scopus citations

Abstract

Low-temperature thermochronological ages of samples from the central Andes correlate with major tectonic events during Late Cretaceous and Cenozoic times. Apatite fission-track (AFT) ages show prominent clusters during the Early-Late Cretaceous in the Coastal Cordillera and the Cordillera de Domeyko; Paleocene- Oligocene ages in the western Puna Plateau and Cordillera de Domeyko; and latest Eocene- Pliocene ages in the Eastern Cordillera. These ages track the expansion of the Andean orogenic edifice, the eastern front of which migrated rapidly eastward ∼200 km and ∼150 km during late Eocene and Pliocene times, respectively. During the intervening time interval, ca. 35-5 Ma, the orogenic strain front migrated slowly eastward through the Eastern Cordillera. A second cluster of Cretaceous ages in the Eastern Cordillera and Santa Bárbara Ranges documents exhumation related to extension in the Salta rift. The highly unsteady pace of orogenic wedge propagation suggests that kinematics controlled local climate, rather than vice versa. The frequency of AFT ages is anticorrelated with magmatic production in the central Andean arc and the rate of convergence between the Nazca and South American plates. We propose a link between AFT bedrock cooling ages in the central Andes and exhumation related to cyclical processes of shortening, wedge propagation, magmatism, and removal of dense roots from beneath the magmatic arc and thickened hinterland region. In particular, periods of sustained exhumation associated with local crustal shortening alternate with periods of rapid eastward wedge propagation during which exhumation was more spatially diffuse across the high-elevation hinterland. Episodes of spatially confined exhumation are correlated with periods of relatively low magmatic production in the central Andean arc and relatively slow or declining plate convergence rates. We speculate that shortening in the upper crust was contemporaneous with underthrusting of lower crust and mantle lithosphere beneath the magmatic arc. Because of thermal inertia, melting of these underthrusted rocks lagged behind the shortening events themselves, thus producing the observed temporal anticorrelation between rapid shortening-induced exhumation and arc magmatism.

Original languageEnglish (US)
Title of host publicationGeodynamics of a Cordilleran Orogenic System
Subtitle of host publicationThe Central Andes of Argentina and Northern Chile
EditorsMihai N. Ducea, Mihai N. Ducea, Peter G. DeCelles, Paul A. Kapp, Barbara Carrapa
PublisherGeological Society of America
Pages201-213
Number of pages13
ISBN (Electronic)9780813712123
DOIs
StatePublished - Jan 1 2015

Publication series

NameMemoir of the Geological Society of America
Volume212
ISSN (Print)0072-1069

ASJC Scopus subject areas

  • Geology

Fingerprint Dive into the research topics of 'Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes'. Together they form a unique fingerprint.

  • Cite this

    Carrapa, B., & DeCelles, P. G. (2015). Regional exhumation and kinematic history of the central Andes in response to cyclical orogenic processes. In M. N. Ducea, M. N. Ducea, P. G. DeCelles, P. A. Kapp, & B. Carrapa (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (pp. 201-213). (Memoir of the Geological Society of America; Vol. 212). Geological Society of America. https://doi.org/10.1130/2015.1212(11)