Repairable Block Failure Resilient codes

Gokhan Calis, O. Ozan Koyluoglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node can only be reconstructed from the available live nodes belonging to available blocks. To analyze the resilience of the system against such block failures, this work introduces the framework of Block Failure Resilient (BFR) codes, wherein the data (e.g., file in DSS) can be decoded by reading out from a same number of codeword symbols (nodes) from each available blocks of the underlying codeword. Further, repairable BFR codes are introduced, wherein any codeword symbol in a failed block can be repaired by contacting to remaining blocks in the system. Motivated from regenerating codes, file size bounds for repairable BFR codes are derived, trade-off between per node storage and repair bandwidth is analyzed, and BFR-MSR and BFR-MBR points are derived. Explicit codes achieving these two operating points for a wide set of parameters are constructed by utilizing combinatorial designs, wherein the codewords of the underlying outer codes are distributed to BFR codeword symbols according to projective planes.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2435-2439
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - Jan 1 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
CountryUnited States
CityHonolulu, HI
Period6/29/147/4/14

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Repairable Block Failure Resilient codes'. Together they form a unique fingerprint.

  • Cite this

    Calis, G., & Koyluoglu, O. O. (2014). Repairable Block Failure Resilient codes. In 2014 IEEE International Symposium on Information Theory, ISIT 2014 (pp. 2435-2439). [6875271] (IEEE International Symposium on Information Theory - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2014.6875271