Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance

A. Licht, G. Dupont-Nivet, A. Pullen, P. Kapp, H. A. Abels, Z. Lai, Z. Guo, J. Abell, D. Giesler

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO2 much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.

Original languageEnglish (US)
Article number12390
JournalNature communications
Volume7
DOIs
StatePublished - Aug 4 2016

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance'. Together they form a unique fingerprint.

  • Cite this

    Licht, A., Dupont-Nivet, G., Pullen, A., Kapp, P., Abels, H. A., Lai, Z., Guo, Z., Abell, J., & Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature communications, 7, [12390]. https://doi.org/10.1038/ncomms12390