Response to trauma of protein, amino acid, and carbohydrate metabolism in injured and uninjured rat skeletal muscles

Marc E Tischler, Julie M. Fagan

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

Soft tissue injury to one hindlimb produced trauma in rats without affecting their food intake or weight gain. Histologic examination showed damage to the soleus and gastrocnemius muscles but not to the extensor digitorum longus muscle. The protein content of the injured soleus muscle was lower than that of the contralateral soleus at one day after injury, and was reflected in vitro by a faster rate of protein degradation. The injured soleus also showed greater rates of protein synthesis, glucose uptake, glycolysis, oxidation of glucose, pyruvate, and leucine, and de novo synthesis of alanine. During three days after the injury, urinary nitrogen excretion increased progressively and was paralleled by a faster rate of protein degradation in uninjured muscles incubated with glucose, insulin, and amino acids. In these muscles, the inhibition of protein degradation by insulin diminished, while its stimulation of protein synthesis was unaffected. This insensitivity of proteolysis to insulin in trauma can explain the increased rate of this process. The oxidation of glucose and pyruvate were lower in the diaphragms of traumatized than of normal rats incubated with leucine, while glycolysis and uptake of 2-deoxyglucose did not differ. The degradation of leucine and isoleucine was greater in the diaphragms of traumatized animals and was associated with a faster de novo synthesis of alanine. For the uninjured soleus muscles of the traumatized rats, the slower rates of oxidation of glucose, glycolysis, and uptake of 2-deoxyglucose in the presence of insulin showed an insensitivity of glucose metabolism to this hormone. In contrast, no differences were seen in these various metabolic processes between the extensor digitorum longus muscles of traumatized and normal rats. These data suggest that the response of skeletal muscles to trauma may depend on their physiologic and biochemical characteristics.

Original languageEnglish (US)
Pages (from-to)853-868
Number of pages16
JournalMetabolism: Clinical and Experimental
Volume32
Issue number9
DOIs
StatePublished - 1983

Fingerprint

Carbohydrate Metabolism
Skeletal Muscle
Amino Acids
Glucose
Proteolysis
Wounds and Injuries
Glycolysis
Leucine
Insulin
Proteins
Deoxyglucose
Diaphragm
Pyruvic Acid
Alanine
Muscles
Soft Tissue Injuries
Muscle Proteins
Isoleucine
Hindlimb
Weight Gain

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{178397372301475cbe578dd0b19871cf,
title = "Response to trauma of protein, amino acid, and carbohydrate metabolism in injured and uninjured rat skeletal muscles",
abstract = "Soft tissue injury to one hindlimb produced trauma in rats without affecting their food intake or weight gain. Histologic examination showed damage to the soleus and gastrocnemius muscles but not to the extensor digitorum longus muscle. The protein content of the injured soleus muscle was lower than that of the contralateral soleus at one day after injury, and was reflected in vitro by a faster rate of protein degradation. The injured soleus also showed greater rates of protein synthesis, glucose uptake, glycolysis, oxidation of glucose, pyruvate, and leucine, and de novo synthesis of alanine. During three days after the injury, urinary nitrogen excretion increased progressively and was paralleled by a faster rate of protein degradation in uninjured muscles incubated with glucose, insulin, and amino acids. In these muscles, the inhibition of protein degradation by insulin diminished, while its stimulation of protein synthesis was unaffected. This insensitivity of proteolysis to insulin in trauma can explain the increased rate of this process. The oxidation of glucose and pyruvate were lower in the diaphragms of traumatized than of normal rats incubated with leucine, while glycolysis and uptake of 2-deoxyglucose did not differ. The degradation of leucine and isoleucine was greater in the diaphragms of traumatized animals and was associated with a faster de novo synthesis of alanine. For the uninjured soleus muscles of the traumatized rats, the slower rates of oxidation of glucose, glycolysis, and uptake of 2-deoxyglucose in the presence of insulin showed an insensitivity of glucose metabolism to this hormone. In contrast, no differences were seen in these various metabolic processes between the extensor digitorum longus muscles of traumatized and normal rats. These data suggest that the response of skeletal muscles to trauma may depend on their physiologic and biochemical characteristics.",
author = "Tischler, {Marc E} and Fagan, {Julie M.}",
year = "1983",
doi = "10.1016/0026-0495(83)90198-1",
language = "English (US)",
volume = "32",
pages = "853--868",
journal = "Metabolism: Clinical and Experimental",
issn = "0026-0495",
publisher = "W.B. Saunders Ltd",
number = "9",

}

TY - JOUR

T1 - Response to trauma of protein, amino acid, and carbohydrate metabolism in injured and uninjured rat skeletal muscles

AU - Tischler, Marc E

AU - Fagan, Julie M.

PY - 1983

Y1 - 1983

N2 - Soft tissue injury to one hindlimb produced trauma in rats without affecting their food intake or weight gain. Histologic examination showed damage to the soleus and gastrocnemius muscles but not to the extensor digitorum longus muscle. The protein content of the injured soleus muscle was lower than that of the contralateral soleus at one day after injury, and was reflected in vitro by a faster rate of protein degradation. The injured soleus also showed greater rates of protein synthesis, glucose uptake, glycolysis, oxidation of glucose, pyruvate, and leucine, and de novo synthesis of alanine. During three days after the injury, urinary nitrogen excretion increased progressively and was paralleled by a faster rate of protein degradation in uninjured muscles incubated with glucose, insulin, and amino acids. In these muscles, the inhibition of protein degradation by insulin diminished, while its stimulation of protein synthesis was unaffected. This insensitivity of proteolysis to insulin in trauma can explain the increased rate of this process. The oxidation of glucose and pyruvate were lower in the diaphragms of traumatized than of normal rats incubated with leucine, while glycolysis and uptake of 2-deoxyglucose did not differ. The degradation of leucine and isoleucine was greater in the diaphragms of traumatized animals and was associated with a faster de novo synthesis of alanine. For the uninjured soleus muscles of the traumatized rats, the slower rates of oxidation of glucose, glycolysis, and uptake of 2-deoxyglucose in the presence of insulin showed an insensitivity of glucose metabolism to this hormone. In contrast, no differences were seen in these various metabolic processes between the extensor digitorum longus muscles of traumatized and normal rats. These data suggest that the response of skeletal muscles to trauma may depend on their physiologic and biochemical characteristics.

AB - Soft tissue injury to one hindlimb produced trauma in rats without affecting their food intake or weight gain. Histologic examination showed damage to the soleus and gastrocnemius muscles but not to the extensor digitorum longus muscle. The protein content of the injured soleus muscle was lower than that of the contralateral soleus at one day after injury, and was reflected in vitro by a faster rate of protein degradation. The injured soleus also showed greater rates of protein synthesis, glucose uptake, glycolysis, oxidation of glucose, pyruvate, and leucine, and de novo synthesis of alanine. During three days after the injury, urinary nitrogen excretion increased progressively and was paralleled by a faster rate of protein degradation in uninjured muscles incubated with glucose, insulin, and amino acids. In these muscles, the inhibition of protein degradation by insulin diminished, while its stimulation of protein synthesis was unaffected. This insensitivity of proteolysis to insulin in trauma can explain the increased rate of this process. The oxidation of glucose and pyruvate were lower in the diaphragms of traumatized than of normal rats incubated with leucine, while glycolysis and uptake of 2-deoxyglucose did not differ. The degradation of leucine and isoleucine was greater in the diaphragms of traumatized animals and was associated with a faster de novo synthesis of alanine. For the uninjured soleus muscles of the traumatized rats, the slower rates of oxidation of glucose, glycolysis, and uptake of 2-deoxyglucose in the presence of insulin showed an insensitivity of glucose metabolism to this hormone. In contrast, no differences were seen in these various metabolic processes between the extensor digitorum longus muscles of traumatized and normal rats. These data suggest that the response of skeletal muscles to trauma may depend on their physiologic and biochemical characteristics.

UR - http://www.scopus.com/inward/record.url?scp=0020601829&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020601829&partnerID=8YFLogxK

U2 - 10.1016/0026-0495(83)90198-1

DO - 10.1016/0026-0495(83)90198-1

M3 - Article

C2 - 6350812

AN - SCOPUS:0020601829

VL - 32

SP - 853

EP - 868

JO - Metabolism: Clinical and Experimental

JF - Metabolism: Clinical and Experimental

SN - 0026-0495

IS - 9

ER -