## Abstract

An unresolved problem in J/ψ phenomenology is a systematic understanding of the differential photoproduction cross section, dσ/dz[γ+p→J/ψ+X], where z=Eψ/Eγ in the proton rest frame. In the nonrelativistic QCD (NRQCD) factorization formalism, fixed-order perturbative calculations of color-octet mechanisms suffer from large perturbative and nonperturbative corrections that grow rapidly in the endpoint region, z→1. In this paper, NRQCD and soft collinear effective theory are combined to resum these large corrections to the color-octet photoproduction cross section. We derive a factorization theorem for the endpoint differential cross section involving the parton distribution function and the color-octet J/ψ shape functions. A one-loop matching calculation explicitly confirms our factorization theorem at next-to-leading order. Large perturbative corrections are resummed using the renormalization group. The calculation of the color-octet contribution to dσ/dz is in qualitative agreement with data. Quantitative tests of the universality of color-octet matrix elements require improved knowledge of shape functions entering these calculations as well as resummation of the color-singlet contribution which accounts for much of the total cross section and also peaks near the endpoint.

Original language | English (US) |
---|---|

Article number | 114004 |

Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |

Volume | 74 |

Issue number | 11 |

DOIs | |

State | Published - 2006 |

## ASJC Scopus subject areas

- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)