Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry

Tom E. McCandless, Joaquin Ruiz, Andrew R. Campbell

Research output: Contribution to journalArticle

104 Citations (Scopus)

Abstract

Rhenium is concentrated mainly in molybdenite (MoS2) and occurs as a major cation in only a few rare minerals. This affinity makes molybdenite an ideal mineral for Re-Os geochronometry, but research on the behavior of Re in molybdenite is limited. Infrared microscope, XRD, back-scattered electron (BSE), and microprobe techniques have been used in this study to document Re behavior in molybdenite affected by hypogene and near-surface processes. In the hypogene environment, both 3R and 2H molybdenite can experience Re loss during hydrothermal alteration, which also causes increased infrared transparency (IR). Alteration at temperatures as low as ~ 150°C can cause Re loss in the presence of advecting fluids, and will affect Re-Os dating if it occurs long after primary mineralization. Re loss in 3R and 2H molybdenite under supergene conditions does not increase IR transparency. Rhenium is not incorporated into supergene ferrimolybdite, but is enriched in K-Al-silicate intergrowths which may be illite(?). These minute intergrowths are present in several samples and would not be detected in a simple optical examination. In the supergene environment elemental Os is stable, whereas Re is not. Rhenium in molybdenite may be removed by supergene fluids after some has decayed to 187Os, causing erroneously old ages, or it may be adsorbed into the illite intergrowths, creating ages which are too young. In the weathering environment, Proterozoic molybdenites have altered to Re-enriched powellite, which can be detected using back-scattered electron imagery. Combined microprobe, XRD, BSE, and infrared microscopy can be successfully used to detect alteration in molybdenite prior to dating. These techniques are non-destructive and should be performed before any molybdenite is dated by the Re-Os system.

Original languageEnglish (US)
Pages (from-to)889-905
Number of pages17
JournalGeochimica et Cosmochimica Acta
Volume57
Issue number4
DOIs
StatePublished - 1993

Fingerprint

Rhenium
rhenium
molybdenite
Transparency
Infrared radiation
Minerals
Electrons
Silicates
transparency
Fluids
Weathering
Cations
electron
illite
Microscopic examination
Microscopes
X-ray diffraction
fluid
mineral
hydrothermal alteration

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Rhenium behavior in molybdenite in hypogene and near-surface environments : Implications for Re-Os geochronometry. / McCandless, Tom E.; Ruiz, Joaquin; Campbell, Andrew R.

In: Geochimica et Cosmochimica Acta, Vol. 57, No. 4, 1993, p. 889-905.

Research output: Contribution to journalArticle

@article{3719f74c25a4400ab0d7a36866fa5a75,
title = "Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry",
abstract = "Rhenium is concentrated mainly in molybdenite (MoS2) and occurs as a major cation in only a few rare minerals. This affinity makes molybdenite an ideal mineral for Re-Os geochronometry, but research on the behavior of Re in molybdenite is limited. Infrared microscope, XRD, back-scattered electron (BSE), and microprobe techniques have been used in this study to document Re behavior in molybdenite affected by hypogene and near-surface processes. In the hypogene environment, both 3R and 2H molybdenite can experience Re loss during hydrothermal alteration, which also causes increased infrared transparency (IR). Alteration at temperatures as low as ~ 150°C can cause Re loss in the presence of advecting fluids, and will affect Re-Os dating if it occurs long after primary mineralization. Re loss in 3R and 2H molybdenite under supergene conditions does not increase IR transparency. Rhenium is not incorporated into supergene ferrimolybdite, but is enriched in K-Al-silicate intergrowths which may be illite(?). These minute intergrowths are present in several samples and would not be detected in a simple optical examination. In the supergene environment elemental Os is stable, whereas Re is not. Rhenium in molybdenite may be removed by supergene fluids after some has decayed to 187Os, causing erroneously old ages, or it may be adsorbed into the illite intergrowths, creating ages which are too young. In the weathering environment, Proterozoic molybdenites have altered to Re-enriched powellite, which can be detected using back-scattered electron imagery. Combined microprobe, XRD, BSE, and infrared microscopy can be successfully used to detect alteration in molybdenite prior to dating. These techniques are non-destructive and should be performed before any molybdenite is dated by the Re-Os system.",
author = "McCandless, {Tom E.} and Joaquin Ruiz and Campbell, {Andrew R.}",
year = "1993",
doi = "10.1016/0016-7037(93)90176-W",
language = "English (US)",
volume = "57",
pages = "889--905",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "4",

}

TY - JOUR

T1 - Rhenium behavior in molybdenite in hypogene and near-surface environments

T2 - Implications for Re-Os geochronometry

AU - McCandless, Tom E.

AU - Ruiz, Joaquin

AU - Campbell, Andrew R.

PY - 1993

Y1 - 1993

N2 - Rhenium is concentrated mainly in molybdenite (MoS2) and occurs as a major cation in only a few rare minerals. This affinity makes molybdenite an ideal mineral for Re-Os geochronometry, but research on the behavior of Re in molybdenite is limited. Infrared microscope, XRD, back-scattered electron (BSE), and microprobe techniques have been used in this study to document Re behavior in molybdenite affected by hypogene and near-surface processes. In the hypogene environment, both 3R and 2H molybdenite can experience Re loss during hydrothermal alteration, which also causes increased infrared transparency (IR). Alteration at temperatures as low as ~ 150°C can cause Re loss in the presence of advecting fluids, and will affect Re-Os dating if it occurs long after primary mineralization. Re loss in 3R and 2H molybdenite under supergene conditions does not increase IR transparency. Rhenium is not incorporated into supergene ferrimolybdite, but is enriched in K-Al-silicate intergrowths which may be illite(?). These minute intergrowths are present in several samples and would not be detected in a simple optical examination. In the supergene environment elemental Os is stable, whereas Re is not. Rhenium in molybdenite may be removed by supergene fluids after some has decayed to 187Os, causing erroneously old ages, or it may be adsorbed into the illite intergrowths, creating ages which are too young. In the weathering environment, Proterozoic molybdenites have altered to Re-enriched powellite, which can be detected using back-scattered electron imagery. Combined microprobe, XRD, BSE, and infrared microscopy can be successfully used to detect alteration in molybdenite prior to dating. These techniques are non-destructive and should be performed before any molybdenite is dated by the Re-Os system.

AB - Rhenium is concentrated mainly in molybdenite (MoS2) and occurs as a major cation in only a few rare minerals. This affinity makes molybdenite an ideal mineral for Re-Os geochronometry, but research on the behavior of Re in molybdenite is limited. Infrared microscope, XRD, back-scattered electron (BSE), and microprobe techniques have been used in this study to document Re behavior in molybdenite affected by hypogene and near-surface processes. In the hypogene environment, both 3R and 2H molybdenite can experience Re loss during hydrothermal alteration, which also causes increased infrared transparency (IR). Alteration at temperatures as low as ~ 150°C can cause Re loss in the presence of advecting fluids, and will affect Re-Os dating if it occurs long after primary mineralization. Re loss in 3R and 2H molybdenite under supergene conditions does not increase IR transparency. Rhenium is not incorporated into supergene ferrimolybdite, but is enriched in K-Al-silicate intergrowths which may be illite(?). These minute intergrowths are present in several samples and would not be detected in a simple optical examination. In the supergene environment elemental Os is stable, whereas Re is not. Rhenium in molybdenite may be removed by supergene fluids after some has decayed to 187Os, causing erroneously old ages, or it may be adsorbed into the illite intergrowths, creating ages which are too young. In the weathering environment, Proterozoic molybdenites have altered to Re-enriched powellite, which can be detected using back-scattered electron imagery. Combined microprobe, XRD, BSE, and infrared microscopy can be successfully used to detect alteration in molybdenite prior to dating. These techniques are non-destructive and should be performed before any molybdenite is dated by the Re-Os system.

UR - http://www.scopus.com/inward/record.url?scp=0027449516&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027449516&partnerID=8YFLogxK

U2 - 10.1016/0016-7037(93)90176-W

DO - 10.1016/0016-7037(93)90176-W

M3 - Article

AN - SCOPUS:0027449516

VL - 57

SP - 889

EP - 905

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 4

ER -