Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge

James A Field, J. Brady

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Azo dyes are important persistent pollutants of textile industry effluents. Reduction of these dyes to their corresponding aromatic amines under anaerobic conditions can be used to initiate biodegradation. Since electron transfer is suggested to be rate limiting, redox mediators are being considered to improve dye reduction kinetics. This study evaluates the use of riboflavin, the redox active moiety of common occurring enzyme cofactors, as a redox mediator to accelerate the reduction of the azo dye, mordant yellow 10 (MY10). Dye reduction was found to follow zero order kinetics, the total rate constant (Vtotal) could be separated into two components: the rate of reduction due to direct contact between enzymes in the sludge with the dye (Vdirect); and the rate of reduction mediated by riboflavin (Vmediated). Riboflavin increased the Vtotal by 61 % at extremely sub-stoichiometric concentrations of 9.1 μmol l-1, which corresponded to a molar riboflavin:dye ratio of 1:60. The accelerating effect of riboflavin displayed saturation kinetics at higher concentrations, with a maximum increase of Vtotal of approximately 2-fold. A model is presented which assumes that Vmediated depends on the activity of riboflavin reductase (RR) and thus follows Michaelis-Menton kinetics with respect to the riboflavin concentration. The half-velocity constant (Km) was very low (6.3 μmol l-1), indicating a high affinity of the sludge RR for riboflavin. Both Vdirect and Vmediated were found to be proportional to the assay sludge concentration. The results taken as a whole indicate that vitamin levels of riboflavin can be utilized to improve the kinetics of azo dye reduction during anaerobic treatment.

Original languageEnglish (US)
Pages (from-to)187-193
Number of pages7
JournalWater Science and Technology
Volume48
Issue number6
StatePublished - 2003

Fingerprint

Azo dyes
dye
sludge
Dyes
Kinetics
kinetics
Enzymes
enzyme
Vitamins
Textile industry
Biodegradation
Oxidation-Reduction
textile industry
vitamin
Effluents
Amines
Rate constants
Assays
anoxic conditions
biodegradation

Keywords

  • Anaerobic biodegradation
  • Azo dye
  • Redox mediator
  • Xenobiotic

ASJC Scopus subject areas

  • Water Science and Technology

Cite this

@article{8dd5cd0669b4427da7c8d9e43ce46ae4,
title = "Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge",
abstract = "Azo dyes are important persistent pollutants of textile industry effluents. Reduction of these dyes to their corresponding aromatic amines under anaerobic conditions can be used to initiate biodegradation. Since electron transfer is suggested to be rate limiting, redox mediators are being considered to improve dye reduction kinetics. This study evaluates the use of riboflavin, the redox active moiety of common occurring enzyme cofactors, as a redox mediator to accelerate the reduction of the azo dye, mordant yellow 10 (MY10). Dye reduction was found to follow zero order kinetics, the total rate constant (Vtotal) could be separated into two components: the rate of reduction due to direct contact between enzymes in the sludge with the dye (Vdirect); and the rate of reduction mediated by riboflavin (Vmediated). Riboflavin increased the Vtotal by 61 {\%} at extremely sub-stoichiometric concentrations of 9.1 μmol l-1, which corresponded to a molar riboflavin:dye ratio of 1:60. The accelerating effect of riboflavin displayed saturation kinetics at higher concentrations, with a maximum increase of Vtotal of approximately 2-fold. A model is presented which assumes that Vmediated depends on the activity of riboflavin reductase (RR) and thus follows Michaelis-Menton kinetics with respect to the riboflavin concentration. The half-velocity constant (Km) was very low (6.3 μmol l-1), indicating a high affinity of the sludge RR for riboflavin. Both Vdirect and Vmediated were found to be proportional to the assay sludge concentration. The results taken as a whole indicate that vitamin levels of riboflavin can be utilized to improve the kinetics of azo dye reduction during anaerobic treatment.",
keywords = "Anaerobic biodegradation, Azo dye, Redox mediator, Xenobiotic",
author = "Field, {James A} and J. Brady",
year = "2003",
language = "English (US)",
volume = "48",
pages = "187--193",
journal = "Water Science and Technology",
issn = "0273-1223",
publisher = "IWA Publishing",
number = "6",

}

TY - JOUR

T1 - Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge

AU - Field, James A

AU - Brady, J.

PY - 2003

Y1 - 2003

N2 - Azo dyes are important persistent pollutants of textile industry effluents. Reduction of these dyes to their corresponding aromatic amines under anaerobic conditions can be used to initiate biodegradation. Since electron transfer is suggested to be rate limiting, redox mediators are being considered to improve dye reduction kinetics. This study evaluates the use of riboflavin, the redox active moiety of common occurring enzyme cofactors, as a redox mediator to accelerate the reduction of the azo dye, mordant yellow 10 (MY10). Dye reduction was found to follow zero order kinetics, the total rate constant (Vtotal) could be separated into two components: the rate of reduction due to direct contact between enzymes in the sludge with the dye (Vdirect); and the rate of reduction mediated by riboflavin (Vmediated). Riboflavin increased the Vtotal by 61 % at extremely sub-stoichiometric concentrations of 9.1 μmol l-1, which corresponded to a molar riboflavin:dye ratio of 1:60. The accelerating effect of riboflavin displayed saturation kinetics at higher concentrations, with a maximum increase of Vtotal of approximately 2-fold. A model is presented which assumes that Vmediated depends on the activity of riboflavin reductase (RR) and thus follows Michaelis-Menton kinetics with respect to the riboflavin concentration. The half-velocity constant (Km) was very low (6.3 μmol l-1), indicating a high affinity of the sludge RR for riboflavin. Both Vdirect and Vmediated were found to be proportional to the assay sludge concentration. The results taken as a whole indicate that vitamin levels of riboflavin can be utilized to improve the kinetics of azo dye reduction during anaerobic treatment.

AB - Azo dyes are important persistent pollutants of textile industry effluents. Reduction of these dyes to their corresponding aromatic amines under anaerobic conditions can be used to initiate biodegradation. Since electron transfer is suggested to be rate limiting, redox mediators are being considered to improve dye reduction kinetics. This study evaluates the use of riboflavin, the redox active moiety of common occurring enzyme cofactors, as a redox mediator to accelerate the reduction of the azo dye, mordant yellow 10 (MY10). Dye reduction was found to follow zero order kinetics, the total rate constant (Vtotal) could be separated into two components: the rate of reduction due to direct contact between enzymes in the sludge with the dye (Vdirect); and the rate of reduction mediated by riboflavin (Vmediated). Riboflavin increased the Vtotal by 61 % at extremely sub-stoichiometric concentrations of 9.1 μmol l-1, which corresponded to a molar riboflavin:dye ratio of 1:60. The accelerating effect of riboflavin displayed saturation kinetics at higher concentrations, with a maximum increase of Vtotal of approximately 2-fold. A model is presented which assumes that Vmediated depends on the activity of riboflavin reductase (RR) and thus follows Michaelis-Menton kinetics with respect to the riboflavin concentration. The half-velocity constant (Km) was very low (6.3 μmol l-1), indicating a high affinity of the sludge RR for riboflavin. Both Vdirect and Vmediated were found to be proportional to the assay sludge concentration. The results taken as a whole indicate that vitamin levels of riboflavin can be utilized to improve the kinetics of azo dye reduction during anaerobic treatment.

KW - Anaerobic biodegradation

KW - Azo dye

KW - Redox mediator

KW - Xenobiotic

UR - http://www.scopus.com/inward/record.url?scp=0242636282&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0242636282&partnerID=8YFLogxK

M3 - Article

C2 - 14640217

AN - SCOPUS:0242636282

VL - 48

SP - 187

EP - 193

JO - Water Science and Technology

JF - Water Science and Technology

SN - 0273-1223

IS - 6

ER -