Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in Hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells

Peter V. Usatyuk, Panfeng Fu, Vijay Mohan, Yulia Epshtein, Jeffrey R. Jacobson, Julian Gomez-Cambronero, Kishore K. Wary, Vytas Bindokas, Steven M. Dudek, Ravi Salgia, Joe GN Garcia, Viswanathan Natarajan

Research output: Contribution to journalArticle

40 Scopus citations


Hepatocyte growth factor (HGF) mediated signaling promotes cell proliferation and migration in a variety of cell types and plays a key role in tumorigenesis. As cell migration is important to angiogenesis, we characterized HGF-mediated effects on the formation of lamellipodia, a pre-requisite for migration using human lung microvascular endothelial cells (HLMVECs). HGF, in a dose-dependent manner, induced c-Met phosphorylation (Tyr-1234/1235, Tyr-1349, Ser-985, Tyr-1003, and Tyr-1313), activation of PI3k (phospho-Yp85) and Akt (phospho-Thr-308 and phospho-Ser-473) and potentiated lamellipodia formation and HLMVEC migration. Inhibition of c-Met kinase by SU11274 significantly attenuated c-Met, PI3k, and Akt phosphorylation, suppressed lamellipodia formation and endothelial cell migration. LY294002, an inhibitor of PI3k, abolished HGF-induced PI3k (Tyr-458), and Akt (Thr-308 and Ser-473) phosphorylation and suppressed lamellipodia formation. Furthermore, HGF stimulated p47phox /Cortactin/Rac1 translocation to lamellipodia and ROS generation. Moreover, inhibition of c-Met/PI3k/Akt signaling axis and NADPH oxidase attenuated HGF-induced lamellipodia formation, ROS generation and cell migration. Ex vivo experiments with mouse aortic rings revealed a role for c-Met signaling in HGF-induced sprouting and lamellipodia formation. Taken together, these data provide evidence in support of a significant role for HGF-induced c-Met/PI3k/Akt signaling and NADPH oxidase activation in lamellipodia formation and motility of lung endothelial cells.

Original languageEnglish (US)
Pages (from-to)13476-13491
Number of pages16
JournalJournal of Biological Chemistry
Issue number19
Publication statusPublished - 2014
Externally publishedYes


ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this