Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene

S. M. Fontaine, Patricia B Hoyer, J. R. Halpert, I. G. Sipes

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F1 mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice, pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP "Supersomes" reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides.

Original languageEnglish (US)
Pages (from-to)1236-1242
Number of pages7
JournalDrug Metabolism and Disposition
Volume29
Issue number9
StatePublished - 2001

Fingerprint

Epoxidation
Cytochrome P-450 Enzyme System
Protein Isoforms
Liver
Epoxy Compounds
Rats
Microsomes
Cytochrome P-450 CYP2E1
4-vinylcyclohexene
cyclohexene
Cytochrome P-450 CYP3A
Poisons
Inbred F344 Rats
Phenobarbital

ASJC Scopus subject areas

  • Pharmacology
  • Toxicology

Cite this

Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene. / Fontaine, S. M.; Hoyer, Patricia B; Halpert, J. R.; Sipes, I. G.

In: Drug Metabolism and Disposition, Vol. 29, No. 9, 2001, p. 1236-1242.

Research output: Contribution to journalArticle

@article{dfcaefcb40c04a3d8123e20ca7f9b13e,
title = "Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene",
abstract = "4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F1 mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice, pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP {"}Supersomes{"} reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides.",
author = "Fontaine, {S. M.} and Hoyer, {Patricia B} and Halpert, {J. R.} and Sipes, {I. G.}",
year = "2001",
language = "English (US)",
volume = "29",
pages = "1236--1242",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "9",

}

TY - JOUR

T1 - Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene

AU - Fontaine, S. M.

AU - Hoyer, Patricia B

AU - Halpert, J. R.

AU - Sipes, I. G.

PY - 2001

Y1 - 2001

N2 - 4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F1 mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice, pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP "Supersomes" reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides.

AB - 4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F1 mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice, pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP "Supersomes" reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides.

UR - http://www.scopus.com/inward/record.url?scp=0034867410&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034867410&partnerID=8YFLogxK

M3 - Article

C2 - 11502734

AN - SCOPUS:0034867410

VL - 29

SP - 1236

EP - 1242

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 9

ER -