Scaling of accuracy in extremely large phylogenetic trees.

O. R. Bininda-Emonds, S. G. Brady, J. Kim, M. J. Sanderson

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The accuracy of phylogenetic inference was examined in simulated data sets up to nearly 10,000 taxa, the size of the largest set of homologous genes in existing molecular sequence databases. Even with a simple search algorithm (maximum parsimony without branch swapping), the number of characters needed to estimate 80% of a tree correctly can scale remarkably well at optimal substitution rates (on the order of log N, where N is the number of taxa). In other words, the number of taxa in an analysis can be doubled and only an arithmetic increase in the number of characters is required to maintain the same level of accuracy. Even substitution rates that are much higher than normally used in phylogenetic studies did not affect the scaling too adversely. However, scaling is usually worse than log N for more stringent levels of accuracy. Moreover, errors are not distributed randomly throughout the tree. Shallow nodes are remarkably easy to reconstruct and display favourable log-linear scaling. The deepest nodes are extremely difficult to reconstruct accurately, even with branch swapping, and the scaling is poor. Therefore, the strategy of sequencing large numbers of homologous genes may not always provide global solutions to extreme phylogenetic problems and alternative strategies may be required.

Original languageEnglish (US)
Pages (from-to)547-558
Number of pages12
JournalPacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Scaling of accuracy in extremely large phylogenetic trees.'. Together they form a unique fingerprint.

Cite this